Florida's Urban Forest: A Valuation of Benefits ${ }^{1}$

Drew C. McLean, Andrew K. Koeser, Deborah R. Hilbert, Shawn Landry, Amr Abd-Elrahman, Katie Britt, Mary Lusk, Michael G. Andreu, and Robert J. Northrop ${ }^{2}$

What is an urban forest?

An urban forest is a collection of trees and other woody vegetation found in and around human developments. An urban forest can be thought of as a gradient of trees extending from the street trees of densely packed urban cores, past the landscaped suburban plots, and all the way out to the remnant forests of exurban (or edges of urban) lands. It includes all the woody vegetation found in urban parks, industrial landscapes, residential properties, wetlands, riparian corridors, coastal ecosystems, greenways, and nature preserves, regardless of ownership (Figure 1).

Tree Canopy Coverage

Urban forest managers use a range of measurements to describe and value the urban forest and its benefits. One measurement that can be made over large areas of land with relative ease is the quantification of tree canopy coverage. Tree canopy cover is the percent of a given land area (e.g., city, national forest, etc.) covered by leaves and branches when viewed from above. Canopy coverage assessments are important tools that allow a community to estimate current canopy coverage, understand the extent of the urban forest, and track potential changes over time. Canopy coverage can be measured in the field with specialized equipment or by analysis of aerial and satellite imagery.

Figure 1. Urban forest gradient; from left to right and top to bottom: urban street trees, park trees, residential trees, and trees along a trail in a nature preserve.
Credits: Drew C. McLean, UF/IFAS
Florida has 29 metropolitan and micropolitan census-designated areas, representing 51 of the 67 counties and over 98% of the state's population (US Census Bureau 2019). These census-designated areas represent geographical regions with at least one densely populated urban area and related economic ties. Metropolitan areas must have one city or town with at least 50,000 people, while micropolitan

1. This document is ENH1331, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date November 2020. Visit the EDIS website at https://edis.ifas.ufl.edu for the currently supported version of this publication.
2. Drew C. McLean, biological scientist; Andrew K. Koeser, assistant professor; Deborah R. Hilbert, biological scientist, Environmental Horticulture Department, UF/IFAS Gulf Coast Research and Education Center; Shawn Landry, associate professor, USF Water Institute, University of South Florida; Amr Abd-Elrahman, associate professor; Katie Britt, geomatics program specialist, Geomatics Department, UF/IFAS Gulf Coast Research and Education Center-Plant City Campus; Mary Lusk, assistant professor, Department of Soil and Water Sciences, UF/IFAS Gulf Coast Research and Education Center; Michael G. Andreu, associate professor, School of Forest Resources and Conservation, UF/IFAS Extension, Gainesville, FL; and Robert J. Northrop, Extension forester, UF/IFAS Extension Hillsborough County, Seffner, FL.

[^0]areas must have a city or town with a population between 10,000 and 50,000 people (US Census Bureau 2019).

To assess the urban forest throughout the state, we analyzed canopy coverage and its associated benefits in each of these census-designated areas. Tree canopy coverage was estimated using a point-based sampling approach. This method generates random points within a designated boundary on high-resolution aerial imagery. The random points are then assessed by a photo interpreter and classified as "Tree/ Shrub" or "No-Tree." The classified points are tallied and divided by the total number of points to reach an overall canopy coverage percentage.

Tree canopy coverage ranged from 18.6% in the Okeechobee micropolitan area to 74.4% in the CrestviewFort Walton-Destin metropolitan area (Table 1). In general, canopy coverage tended to decrease from north to south and west to east across the state (Figure 2).

Figure 2. Locations of the 29 metropolitan and micropolitan areas in Florida. The different colors represent the percent of canopy coverage. Numbers correspond to the metropolitan and micropolitan area names in the legend on left side of the figure.

Urban Forest Benefits

Urban forest ecosystems provide a variety of economic and environmental benefits (Livesley et al. 2016), including shading homes to create energy savings, intercepting rain to reduce stormwater, improving air quality by filtering pollutants, and sequestering carbon to offset emissions associated with climate change. Many urban forest benefits are influenced by the combined surface area of all the leaves in a tree's canopy (Peper and McPherson 2003). Researchers use leaf area measurements to estimate the benefits provided by individual trees in an urban forest (Figure 3).

Figure 3. Sign displaying some of the estimated benefits produced from a tree in Pinellas County, FL. Credits: Drew C. McLean, UF/IFAS

Researchers have developed ecosystem services models that use urban forest data to calculate the total economic value of all trees in a designated area, typically at the city or county level. Prior urban forest ecosystem service assessments for Gainesville and Tampa, Florida can be found at https://edis.ifas.ufl.edu/fr265 (Tampa) and https://edis.ifas. ufl.edu/fr414 (Gainesville). Evaluation of these benefits allows city managers and citizens to gauge the importance of the urban forest compared to other key infrastructure elements and to budget for the appropriate management of this natural resource.

Currently these models are able to estimate only some of the more tangible benefits of the urban forest, like the ones mentioned above. There are many other important benefits, such as wildlife habitat, recreational value, and human psychological effects. Researchers are working to
apply economic values to these less tangible but important services. While all of these models are based on the best available science at the time, the data they produce are still just estimations.

For this study, the total acreage of each metropolitan and micropolitan area was calculated in a geographic information system (ArcGIS v10.5, ESRI). Acreage of tree canopy was estimated by multiplying the total area of each censusdesignated boundary by the canopy coverage percentage obtained during the aerial imagery interpretation process. We used the estimation of "canopy area" (Table 1) in each metropolitan and micropolitan area to calculate the value of benefits received from their corresponding urban forest. Benefit production rates (e.g., tons of air pollution removed per acre) and the monetary values for air pollution, avoided runoff, carbon sequestration, and carbon storage were based on data obtained from the i-Tree Canopy software v7.0 (https://canopy.itreetools.org/benefits/).

Air Pollution Removal

Toxic air pollutants such as carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, ground level ozone $\left(\mathrm{O}_{3}\right)$, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and particulate matter (PM_{10} and $\mathrm{PM}_{2.5}$) can cause adverse effects to human health, disrupt ecosystem processes, and reduce visibility in cities (EPA 2019). Carbon monoxide, sulfur dioxide, and nitrogen dioxide gas are released into the atmosphere mainly through the burning of fossil fuels in power plants, industrial facilities, and automobiles. Ground-level ozone is created by chemical reactions between air pollutants and sunlight (EPA 2019). Particulate matter can be released directly from a source, such as unpaved roads, fields, and smokestacks, or created in the atmosphere through complex chemical reactions.

Air pollutants have been shown to affect cardiovascular and respiratory health, with long-term exposure potentially leading to the development of serious diseases (Stieb et al. 2009). In addition to the human health effects, air pollutants negatively affect the environment by contributing to pollution of coastal waters, smog production, and the formation of acid rain (Manisalidis et al. 2020).

Tree leaves primarily remove air pollutants by directly absorbing them or indirectly capturing them on their surfaces (Grote et al. 2016; Nowak et al. 2006). Altogether, the trees in Florida's 29 census-designated areas remove over 600,000 tons of combined air pollution each year, saving Florida residents an estimated $\$ 605$ million in annual air-pollution-related health care costs (Figure 4; Table 2).

Estimated removal amounts for each air pollutant are listed by micropolitan and metropolitan area in Table 3.

Stormwater Runoff

Stormwater runoff is the rainwater that flows over the ground after a rain event. Impervious surfaces, such as roads, parking lots, and rooftops, do not allow water to infiltrate into the soil. Instead, these impervious surfaces swiftly direct large volumes of water into nearby stormwater drains that typically discharge into neighboring waterbodies. In urban areas with increased impervious surfaces, stormwater runoff can be a significant source of pollution to local waterbodies. As water flows over impervious surfaces, it can pick up many different pollutants (e.g., antifreeze, grease, pesticides, bacteria, etc.) that are present on these paved surfaces.

Trees help combat the negative effects of stormwater runoff by capturing rainfall on their leaves and bark, thereby reducing the amount of water hitting impervious surfaces. In addition, tree roots and old fallen leaves can promote soil conditions that allow more water to enter the soil during a rain event. Collectively, the urban forests in the 29 metropolitan and micropolitan areas intercept an estimated 50 billion gallons of water a year, resulting in savings of over $\$ 451$ million in avoided annual stormwater treatment costs (Table 4). To put this volume of water in context, that is enough to fill approximately 75,000 Olympic-sized swimming pools each year (Figure 5).

Figure 4. Tree leaves remove an estimated 600,000 tons of air pollutants each year, saving Floridians $\$ 605$ million in air-pollutionrelated health care costs annually.

Figure 5. The amount of water Florida's urban forest reduce stormwater volumes by each year is enough to fill 75,000 Olympic swimming pools.

Carbon Sequestration and Storage

Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is a major greenhouse gas that plays a significant role in global climate change. Carbon dioxide is mainly released to the atmosphere through the burning of fossil fuels (EPA 2019). Trees can help combat climate change by taking in carbon dioxide from the atmosphere. During photosynthesis, trees take in atmospheric carbon dioxide and store it as carbon in their trunks, branches, and roots. A tree will continue to sequester and store carbon until it dies.

Carbon sequestration and storage rates are often presented as "carbon dioxide equivalents" as a way of measuring carbon footprints. Carbon dioxide equivalents report a single number to represent the amount of carbon dioxide that would create the same impact as all of the greenhouse gases combined (i.e., carbon dioxide, methane, nitrous oxide, and ozone). For example, because methane is a more powerful greenhouse gas, one ton of methane is equivalent to 25 tons of carbon dioxide (EPA 2019).

Equivalent calculators can be used to express these extremely large emission values in terms that are easier to digest and understand (Figure 6). Florida's urban forests sequester (e.g., capture through active growth) 65 million tons of carbon dioxide equivalent a year, which translates to an estimated $\$ 3$ billion in annual benefits (Table 5). Florida's urban forests store (in their wood) a total of one billion tons of carbon dioxide equivalent, worth an estimated $\$ 76$ billion in services (Table 6).

Carbon Pricing

Carbon pricing is a financial-based strategy that assigns monetary value to carbon emissions to help combat climate change. The price assigned to carbon can vary depending on the source and valuation method. In addition, carbon prices are influenced by regulatory, economic, and social factors and therefore may not always reflect current market prices. Even though carbon prices are not standardized and can fluctuate over time, they can be useful tools for portraying the economic value of carbon emissions. When assigning a value to carbon, it is important not only to list the price used in the valuation but also the amount of carbon the value relates to. This will allow for comparisons of carbon valuations across different markets using different carbon prices.

Valuable Natural Resource

Florida's urban forests are an extremely valuable natural resource that provides an estimated $\$ 4.1$ billion in annual benefits for the state's citizens and visitors (Table 7). In addition, these urban forests will provide an estimated $\$ 76$ billion in climate change benefits over their lifespan as trees continue to grow, storing more carbon in their tissues. It is important to remember that the benefit numbers and monetary values presented in this report are estimations obtained from scientific models. While these numbers may not be absolute, they are based on the best available science and are important for estimating the value of urban forests and the services they provide. In addition, this valuation of Florida's urban forest only includes some of the more tangible benefits, and we did not assess every county in the state. Many of the benefits presented in this report are influenced by the health and size of an individual tree's canopy. Preservation and management of the urban forest is critical to ensure that citizens receive the maximum benefits that urban trees can provide.

Figure 6. Carbon dioxide emission equivalent infographics. Credits: US EPA greenhouse gas equivalencies calculator

Acknowledgments

The authors would like to acknowledge the following people for their indispensable help conducting the canopy assessments: Brooke Anderson, Saige Middleton, and Hunter Thorn.

Literature Cited

Grote, R., R. Samson, R. Alonso, J. Amorim, P. Cariñanos, G. Churkina, S. Fares, D. Le Thiec, Ü. Niinemets, T. N. Mikkelsen, E. Paoletti, A. Tiwary, and C. Calfapietra. 2016. "Functional Traits of Urban Trees: Air Pollution Mitigation Potential." Frontiers in Ecology and the Environment 14 (10): 543-550.

Livesley, S. J., E. G. McPherson, and C. Calfapietra. 2016. "The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale." Journal of Environmental Quality 45:119-124.

Manisalidis, I, E. Stavropoulou, A. Stravropoulos, and E. Bezirtzoglou. 2020. "Environmental and Health Impacts of Air Pollution: A Review." Frontiers in Public Health 8:14. https://doi.org/10.3389/fpubh.2020.00014.

Nowak, D. J., D. E. Crane, and J. C. Stevens. 2006. "Air Pollution Removal by Urban Trees and Shrubs in the United States." Urban Forest \& Urban Greening 4 (3-4): 115-123.

Peper, P. J., and E. G. McPherson. 2003. "Evaluation of Four Methods for Estimating Leaf Area of Isolated Trees." 2 (1): 19-29.

Stieb, D. M., M. Szyszkowicz, B. H. Rowe, and J. A. Leech. 2009. "Air Pollution and Emergency Department Visits for Cardiac and Respiratory Conditions: A Multi-city TimeSeries Analysis." Environmental Health 8 (25).

United States Census Bureau. 2019. Florida Counties by Population. Florida Demographics by Cubit. Accessed May 2019. https://www.florida-demographics.com/ counties_by_population

United States Environmental Protection Agency. 2019. "Criteria Air Pollutants." Accessed May 2019. https://www. epa.gov/criteria-air-pollutants

Resources

Greenhouse Gases Equivalencies Calculator. United States Environmental Protection Agency. Web. Accessed 5/20. https://www.epa.gov/energy/ greenhouse-gas-equivalencies-calculator
i-Tree Canopy. i-Tree Software Suite v7.0. Web. Accessed 4/20. https://canopy.itreetools.org/

NAIP imagery. United States Department of AgricultureNatural Resources Conservation Services. Web. Accessed 3/20. https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx

Table 1. Population, percent tree canopy cover with 95% confidence interval, and estimated acres of tree canopy with associated standard error of the 29 metropolitan and micropolitan areas in Florida, sorted from highest to lowest canopy cover.

Overview of Canopy Cover				
Area	2019 Population ${ }^{2}$	Percent Canopy Cover with 95\% Confidence Intervaly	Canopy Area ${ }^{\times}$ (ac)	Canopy Area SE ${ }^{\text {w }}$ (ac)
Crestview-Fort Walton Beach-Destin	284,809	$74.4 \% \pm 1.9 \%$	946,304	12,771
Tallahassee	387,227	$73.9 \% \pm 1.9 \%$	1,149,077	15,605
Jacksonville	1,559,514	67.8\% $\pm 2.0 \%$	1,367,161	22,678
Lake City	71,686	$62.1 \% \pm 2.1 \%$	316,357	5,555
Gainesville	329,128	$57.8 \% \pm 2.2 \%$	887,380	17,263
Pensacola-Ferrypass-Brent	502,629	$57.2 \% \pm 2.2 \%$	616,384	12,012
Cape Coral-Fort Myers	770,577	$56.7 \% \pm 2.2 \%$	279,271	5,770
Key West	74,228	$56.6 \% \pm 2.2 \%$	350,308	7,406
Ocala	365,579	$56.4 \% \pm 2.2 \%$	583,500	11,672
Homosassa Springs	149,657	$55.3 \% \pm 2.2 \%$	212,249	4,380
The Villages	132,420	$54.8 \% \pm 2.2 \%$	198,293	4,086
Naples-Marco Island	384,902	$51.9 \% \pm 2.2 \%$	659,038	14,379
Panama City	174,705	$51.5 \% \pm 2.2 \%$	252,326	5,542
Tampa-St. Petersburg-Clearwater	3,194,831	$46.2 \% \pm 2.2 \%$	733,931	18,052
Orlando-Kissimmee-Sanford	2,608,147	$45.5 \% \pm 2.2 \%$	1,046,163	26,673
Lakeland-Winter Haven	724,777	$40.1 \% \pm 2.1 \%$	480,751	13,433
Sebastian-Vero Beach	159,923	$40.0 \% \pm 2.1 \%$	121,779	3,418
Punta Gorda	188,910	$38.6 \% \pm 2.1 \%$	168,267	4,841
Palm Bay-Melbourne-Titusville	601,942	$37.3 \% \pm 2.1 \%$	236,040	6,968
North Port-Bradenton-Sarasota	836,995	$35.9 \% \pm 2.1 \%$	296,465	8,950
Palatka	74,521	$34.7 \% \pm 2.1 \%$	164,918	5,186
Deltona-Daytona Beach-Ormond Beach	668,365	$34.0 \% \pm 2.1 \%$	349,023	11,093
Wauchula	26,937	$33.5 \% \pm 2.1 \%$	133,914	4,244
Port St. Lucie	489,297	$29.6 \% \pm 2.0 \%$	207,150	7,325
Arcadia	38,001	$28.7 \% \pm 2.0 \%$	116,039	4,099
Clewiston	42,022	$26.4 \% \pm 1.9 \%$	195,215	7,325
Miami-Fort Lauderdale-Pompano Beach	6,166,488	$25.6 \% \pm 1.9 \%$	820,294	31,686
Sebring-Avon Park	106,221	$25.2 \% \pm 1.9 \%$	166,551	6,481
Okeechobee	42,168	$18.6 \% \pm 1.7 \%$	92,500	4,384
²019 population based on US Census Bureau estimations for 2019. ${ }^{\times}$Canopy cover estimations based on dot-based analysis of on 2019 leaf-on aerial imagery from National Agricultural Imagery Program (NAIP; USDA 2019). ${ }^{y}$ Canopy area is percent canopy cover multiplied by total acres of the metropolitan/micropolitan area. ${ }^{w}$ SE is an abbreviation for standard error, a measure of statistical accuracy for an estimated mean.				

Table 2. Total estimated annual air pollution removal (in US tons) and total estimated air pollution removal values (in USD) with associated standard error (SE) calculations for the 29 metropolitan and micropolitan areas in Florida. Air pollution removal amounts and monetary values are based on county-level multipliers listed in the i-Tree canopy v7.0 software.

Total Air Pollution Removal (US tons)				
Metropolitan / Micropolitan Area	Total Air Pollution Removal ${ }^{2}$ (T)	Total Air Pollution Removal SE (T)	Annual Value	Annual Value SE
Crestview-Fort Walton Beach-Destin	49,447	667	\$19,876,367	\$268,241
Tallahassee	48,107	653	\$18,569,840	\$252,193
Jacksonville	72,238	1,198	\$67,597,085	\$1,121,265
Lake City	16,837	296	\$3,292,058	\$57,811
Gainesville	42,082	819	\$11,249,273	\$218,836
Pensacola-Ferrypass-Brent	33,697	657	\$35,387,009	\$689,590
Cape Coral-Fort Myers	12,950	268	\$21,513,273	\$444,485
Key West	15,502	328	\$2,198,593	\$46,478
Ocala	28,501	570	\$16,410,528	\$328,269
Homosassa Springs	9,137	189	\$13,143,399	\$271,220
The Villages	8,437	174	\$5,445,000	\$112,199
Naples-Marco Island	31,777	693	\$12,965,969	\$282,902
Panama City	14,364	315	\$11,079,671	\$243,341
Tampa-St. Petersburg-Clearwater	35,392	870	\$108,067,269	\$2,657,995
Orlando-Kissimmee-Sanford	46,676	1,190	\$66,711,108	\$1,700,894
Lakeland-Winter Haven	22,330	624	\$20,695,248	\$578,240
Sebastian-Vero Beach	5,052	142	\$5,800,433	\$162,793
Punta Gorda	8,068	232	\$8,014,045	\$230,570
Palm Bay-Melbourne-Titusville	11,885	351	\$13,505,954	\$398,698
North Port-Bradenton-Sarasota	15,239	460	\$24,949,673	\$753,172
Palatka	9,482	298	\$3,645,056	\$114,617
Deltona-Daytona Beach-Ormond Beach	16,234	516	\$18,988,661	\$603,524
Wauchula	6,127	194	\$743,110	\$23,550
Port St. Lucie	9,642	341	\$13,133,556	\$464,407
Arcadia	5,645	199	\$866,638	\$30,611
Clewiston	8,422	316	\$1,019,992	\$38,274
Miami-Fort Lauderdale-Pompano Beach	36,871	1,424	\$77,315,778	\$2,986,515
Sebring-Avon Park	7,605	296	\$2,695,689	\$104,897
Okeechobee	3,797	180	\$760,870	\$36,061
Total	631,544	14,461	\$605,641,144	\$15,221,645

${ }^{2}$ Total air pollution is sum of carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, ground level ozone $\left(\mathrm{O}_{3}\right)$, particulate matter between 10 and 2.5 microns $\left(\mathrm{PM}_{10}\right)$, particulate matter less than 2.5 microns $\left(\mathrm{PM}_{2.5}\right)$, and sulfur dioxide $\left(\mathrm{SO}_{2}\right)$. micropolitan areas in Florida. Removal rates are based on county-level multipliers listed in the i-Tree canopy v7.0 software.

Metropolitan / Micropolitan Area

Crestview-Fort Walton Beach-Destin
Tallahassee
Jacksonville
Lake City
Gainesville
Pensacola-Ferrypass-Brent

Homosassa Springs
The Villages

 Orlando-Kissimmee-Sanford Lakeland-Winter Haven Sebastian-Vero Beach
Punta Gorda

Palm Bay-Melbourne-Titusville | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| \vdots |
| \vdots |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| \vdots |
| 0 |
| 0 | Palatka

 Wauchula Port St. Lucie
Arcadia
Miami-Fort Lauderdale-Pompano Beach Sebring-Avon Park Okeechobee

Table 4. Annual estimated avoided stormwater runoff volumes in gallons and estimated values of annual avoided runoff (in USD) with associated standard error (SE) calculations for the 29 metropolitan and micropolitan areas in Florida. Avoided runoff rates and monetary values are based on county-level multipliers listed in the i-Tree canopy v7.0 software.

| Metropolitan / Micropolitan
 Area | Avoided Stormwater
 Runoff (gallons)
 (gal) | Avoided Runoff SE
 (gal) | Annual Value | Annual Value |
| :--- | :---: | :---: | :---: | :---: | :---: |
| SE | | | | |

Table 5. Annual estimated carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ sequestration amounts in US tons and annual estimated value of carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ sequestration (in USD) with associated standard error (SE) calculations for the 29 metropolitan and micropolitan areas in Florida.

Carbon Sequestration (US tons)				
	Sequestered $\mathrm{CO}_{2} \mathrm{e}^{z}$ (T)	Sequestered $\mathrm{CO}_{2} \mathrm{e}^{2}$ SE (T)	Annual Value ${ }^{\text {y }}$	Annual Value ${ }^{\mathrm{x}}$ SE
Crestview-Fort Walton Beach-Destin	4,736,249	63,918	\$220,282,941	\$2,972,826
Tallahassee	5,751,129	78,105	\$267,485,026	\$3,632,652
Jacksonville	6,842,643	113,502	\$318,251,323	\$5,278,984
Lake City	1,583,365	27,805	\$73,642,301	\$1,293,218
Gainesville	4,441,339	86,399	\$206,566,683	\$4,018,420
Pensacola-Ferrypass-Brent	3,085,001	60,118	\$143,483,402	\$2,796,074
Cape Coral-Fort Myers	1,397,753	28,879	\$65,009,503	\$1,343,159
Key West	1,753,292	37,065	\$81,545,612	\$1,723,878
Ocala	2,920,418	58,419	\$135,828,628	\$2,717,060
Homosassa Springs	1,062,306	21,921	\$49,407,846	\$1,019,552
The Villages	992,455	20,450	\$46,159,064	\$951,150
Naples-Marco Island	3,298,485	71,969	\$153,412,525	\$3,347,283
Panama City	1,262,892	27,737	\$58,737,117	\$1,290,032
Tampa-St. Petersburg-Clearwater	3,673,326	90,348	\$170,846,390	\$4,202,094
Orlando-Kissimmee-Sanford	5,236,047	133,500	\$243,528,533	\$6,209,105
Lakeland-Winter Haven	2,406,159	67,230	\$111,910,476	\$3,126,856
Sebastian-Vero Beach	609,502	17,106	\$28,347,927	\$795,602
Punta Gorda	842,178	24,230	\$39,169,698	\$1,126,940
Palm Bay-Melbourne-Titusville	1,181,382	34,875	\$54,946,063	\$1,622,016
North Port-Bradenton-Sarasota	1,483,808	44,793	\$69,011,894	\$2,083,307
Palatka	825,417	25,955	\$38,390,137	\$1,207,156
Deltona-Daytona Beach-Ormond Beach	1,746,862	55,521	\$81,246,534	\$2,582,289
Wauchula	670,240	21,241	\$31,172,878	\$987,906
Port St. Lucie	1,036,784	36,661	\$48,220,832	\$1,705,103
Arcadia	580,777	20,514	\$27,011,948	\$954,100
Clewiston	977,053	36,663	\$45,442,724	\$1,705,181
Miami-Fort Lauderdale-Pompano Beach	4,105,573	158,588	\$190,950,211	\$7,375,928
Sebring-Avon Park	833,586	32,437	\$38,770,086	\$1,508,657
Okeechobee	462,961	21,942	\$21,532,305	\$1,020,500
Total	65,798,981	1,517,889	\$3,060,310,607	\$70,597,028

${ }^{2} \mathrm{CO}_{2}$ e sequestration rate was $5.005 \mathrm{~T} / \mathrm{ac}$. Based on US-level rate listed in i-Tree canopy v7.0 software.
${ }^{y} \mathrm{CO}_{2} \mathrm{e}$ sequestration was valued at $\$ 46.51 / \mathrm{T}$. Based on US-level value listed in i -Tree canopy v7.0 software.
${ }^{\times}$SE is an abbreviation for standard error, a measure of statistical accuracy for an estimated mean.

Table 6. Estimated carbon dioxide equivalent $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ storage amounts in US tons and estimated value of carbon dioxide equivalents $\left(\mathrm{CO}_{2} \mathrm{e}\right)$ storage (in USD) with associated standard error (SE) calculations for the 29 metropolitan and micropolitan areas in Florida.

Carbon Storage (US tons)				
Metropolitan / Micropolitan Area	CO_{2} e Storage ${ }^{2}$ (T)	$\mathrm{CO}_{2} \mathrm{e}$ Storage SE ${ }^{y}$ (T)	$\mathrm{CO}_{2} \mathrm{e}$ Storage Value ${ }^{x}$	CO_{2} e Storage Value SE $^{\text {y }}$
Crestview-Fort Walton Beach-Destin	118,947,511	1,605,255	\$5,532,248,717	\$138,266,145
Tallahassee	144,435,506	1,961,545	\$6,717,695,366	\$168,954,640
Jacksonville	171,848,090	2,850,525	\$7,992,654,654	\$245,525,566
Lake City	39,765,078	698,307	\$1,849,473,796	\$60,147,587
Gainesville	111,541,060	2,169,850	\$5,187,774,704	\$186,896,707
Pensacola-Ferrypass-Brent	77,477,600	1,509,813	\$3,603,483,163	\$130,045,410
Cape Coral-Fort Myers	35,103,574	725,273	\$1,632,667,224	\$62,470,306
Key West	44,032,677	930,853	\$2,047,959,797	\$80,177,568
Ocala	73,344,205	1,467,147	\$3,411,238,966	\$126,370,455
Homosassa Springs	26,679,053	550,534	\$1,240,842,767	\$47,419,355
The Villages	24,924,789	513,598	\$1,159,251,914	\$44,237,983
Naples-Marco Island	82,839,088	1,807,453	\$3,852,845,981	\$155,682,140
Panama City	31,716,636	696,586	\$1,475,140,730	\$59,999,395
Tampa-St. Petersburg-Clearwater	92,252,958	2,269,030	\$4,290,685,057	\$195,439,376
Orlando-Kissimmee-Sanford	131,499,573	3,352,768	\$6,116,045,162	\$288,785,468
Lakeland-Winter Haven	60,428,976	1,688,427	\$2,810,551,659	\$145,430,081
Sebastian-Vero Beach	15,307,201	429,606	\$711,937,935	\$37,003,459
Punta Gorda	21,150,699	608,521	\$983,718,994	\$52,413,978
Palm Bay-Melbourne-Titusville	29,669,558	875,850	\$1,379,931,134	\$75,439,971
North Port-Bradenton-Sarasota	37,264,769	1,124,936	\$1,733,184,422	\$96,894,596
Palatka	20,729,754	651,836	\$964,140,861	\$56,144,845
Deltona-Daytona Beach-Ormond Beach	43,871,182	1,394,374	\$2,040,448,675	\$120,102,274
Wauchula	16,832,607	533,445	\$782,884,568	\$45,947,498
Port St. Lucie	26,038,094	920,715	\$1,211,031,741	\$79,304,355
Arcadia	14,585,805	515,191	\$678,385,784	\$44,375,168
Clewiston	24,537,982	920,757	\$1,141,261,557	\$79,307,959
Miami-Fort Lauderdale-Pompano Beach	103,108,539	3,982,824	\$4,795,578,148	\$343,054,401
Sebring-Avon Park	20,934,918	814,639	\$973,683,022	\$70,167,636
Okeechobee	11,626,929	551,046	\$540,768,464	\$47,463,462
Total	1,652,494,409	38,120,704	\$76,857,514,962	\$3,283,467,783
${ }^{2} \mathrm{CO}_{2} \mathrm{e}$ storage rate was $125.697 \mathrm{~T} / \mathrm{ac}$. Based on US-level rate listed in i-Tree canopy v 7.0 software. ${ }^{~} \mathrm{SE}$ is an abbreviation for standard error, a measure of statistical accuracy for an estimated mean. ${ }^{\times} \mathrm{CO}_{2} \mathrm{e}$ storage was valued at $\$ 46.51 / \mathrm{T}$. Based on US-level value listed in i -Tree canopy v 7.0 software.				

Table 7. Estimated value of total annual benefits (air pollution removal, avoided stormwater runoff, and carbon dioxide equivalent [CO 2 e] sequestration; in USD) and associated standard error (SE) calculations for the 29 metropolitan and micropolitan areas in Florida. Monetary values are based on county-level values listed in the i-Tree canopy v7.0 software.

Total Annual Benefits								
Metropolitan / Micropolitan Area	Air Pollution	Air Pollution SE	Avoided Runoff	Avoided Runoff SE	$\mathrm{CO}_{2} \mathrm{e}$ Sequestered ${ }^{2}$	$\begin{gathered} \mathrm{CO}_{2} \mathrm{e} \\ \text { Sequestered } \\ \text { SE }^{y} \end{gathered}$	Total Benefits ${ }^{\text {x }}$	Total Benefits SE ${ }^{y}$
Crestview-Fort Walton Beach-Destin	\$19,876,367	\$268,241	\$15,878,139	\$214,283	\$220,282,941	\$2,972,826	\$256,037,447	\$3,455,351
Tallahassee	\$18,569,840	\$252,193	\$13,927,557	\$189,147	\$267,485,026	\$3,632,652	\$299,982,422	\$4,073,991
Jacksonville	\$67,597,085	\$1,121,265	\$41,102,869	\$681,793	\$318,251,323	\$5,278,984	\$426,951,277	\$7,082,042
Lake City	\$3,292,058	\$57,811	\$682,286	\$11,981	\$73,642,301	\$1,293,218	\$77,616,645	\$1,363,011
Gainesville	\$11,249,273	\$218,836	\$5,511,780	\$107,223	\$206,566,683	\$4,018,420	\$223,327,737	\$4,344,479
Pensacola-Ferrypass-Brent	\$35,387,009	\$689,590	\$21,083,563	\$410,857	\$143,483,402	\$2,796,074	\$199,953,974	\$3,896,521
Cape Coral-Fort Myers	\$21,513,273	\$444,485	\$32,777,402	\$677,213	\$65,009,503	\$1,343,159	\$119,300,178	\$2,464,856
Key West	\$2,198,593	\$46,478	\$2,221,197	\$46,956	\$81,545,612	\$1,723,878	\$85,965,402	\$1,817,313
Ocala	\$16,410,528	\$328,269	\$11,502,087	\$230,083	\$135,828,628	\$2,717,060	\$163,741,243	\$3,275,412
Homosassa Springs	\$13,143,399	\$271,220	\$6,646,633	\$137,156	\$49,407,846	\$1,019,552	\$69,197,878	\$1,427,927
The Villages	\$5,445,000	\$112,199	\$3,130,453	\$64,506	\$46,159,064	\$951,150	\$54,734,517	\$1,127,855
Naples-Marco Island	\$12,965,969	\$282,902	\$12,365,715	\$269,806	\$153,412,525	\$3,347,283	\$178,744,208	\$3,899,991
Panama City	\$11,079,671	\$243,341	\$6,236,435	\$136,970	\$58,737,117	\$1,290,032	\$76,053,222	\$1,670,342
Tampa-St. Petersburg-Clearwater	\$108,067,269	\$2,657,995	\$56,001,903	\$1,377,408	\$170,846,390	\$4,202,094	\$334,915,562	\$8,237,497
Orlando-Kissimmee-Sanford	\$66,711,108	\$1,700,894	\$53,292,844	\$1,358,777	\$243,528,533	\$6,209,105	\$363,532,485	\$9,268,776
Lakeland-Winter Haven	\$20,695,248	\$578,240	\$14,764,539	\$412,531	\$111,910,476	\$3,126,856	\$147,370,263	\$4,117,627
Sebastian-Vero Beach	\$5,800,433	\$162,793	\$3,981,619	\$111,747	\$28,347,927	\$795,602	\$38,129,978	\$1,070,142
Punta Gorda	\$8,014,045	\$230,570	\$7,054,815	\$202,972	\$39,169,698	\$1,126,940	\$54,238,558	\$1,560,482
Palm Bay-Melbourne-Titusville	\$13,505,954	\$398,698	\$16,473,438	\$486,298	\$54,946,063	\$1,622,016	\$84,925,455	\$2,507,012
North Port-Bradenton-Sarasota	\$24,949,673	\$753,172	\$15,639,381	\$472,116	\$69,011,894	\$2,083,307	\$109,600,947	\$3,308,595
Palatka	\$3,645,056	\$114,617	\$1,828,193	\$57,486	\$38,390,137	\$1,207,156	\$43,863,385	\$1,379,260
Deltona-Daytona Beach-Ormond Beach	\$18,988,661	\$603,524	\$9,921,090	\$315,326	\$81,246,534	\$2,582,289	\$110,156,285	\$3,501,139
Wauchula	\$743,110	\$23,550	\$577,625	\$18,306	\$31,172,878	\$987,906	\$32,493,613	\$1,029,761
Port St. Lucie	\$13,133,556	\$464,407	\$8,693,941	\$307,420	\$48,220,832	\$1,705,103	\$70,048,328	\$2,476,930
Arcadia	\$866,638	\$30,611	\$720,755	\$25,458	\$27,011,948	\$954,100	\$28,599,341	\$1,010,168
Clewiston	\$1,019,992	\$38,274	\$943,086	\$35,388	\$45,442,724	\$1,705,181	\$47,405,803	\$1,778,843
Miami-Fort Lauderdale-Pompano Beach	\$77,315,778	\$2,986,515	\$86,050,393	\$3,323,911	\$190,950,211	\$7,375,928	\$354,316,381	\$13,686,353
Sebring-Avon Park	\$2,695,689	\$104,897	\$2,040,254	\$79,392	\$38,770,086	\$1,508,657	\$43,506,029	\$1,692,946

Total Annual Benefits								
Metropolitan / Micropolitan Area	Air Pollution	Air Pollution SE	Avoided Runoff	Avoided Runoff SE	$\mathrm{CO}_{2} \mathrm{e}$ Sequestered ${ }^{2}$	$\mathrm{CO}_{2} \mathrm{e}$ Sequestered SE ${ }^{y}$	Total Benefits ${ }^{\times}$	Total Benefits SE ${ }^{y}$
Okeechobee	\$760,870	\$36,061	\$478,785	\$22,692	\$21,532,305	\$1,020,500	\$22,771,961	\$1,079,252
Total	\$605,641,144	\$15,221,645	\$451,528,775	\$11,785,202	\$3,060,310,607	\$70,597,028	\$4,117,480,527	\$97,603,875
${ }^{2} \mathrm{CO}_{2} \mathrm{e}$ sequestration was valued at $\$ 46.51 / \mathrm{T}$. Based on US-level value listed in i-Tree canopy v7.0 software. ${ }^{~} \mathrm{SE}$ is an abbreviation for standard error, a measure of statistical accuracy for an estimated mean. ${ }^{\times}$Total Benefits $=$the sum of air pollution, avoided stormwater runoff, and CO_{2} equivalent sequestration benefit values.								

[^0]: The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations. For more information on obtaining other UF/IFAS Extension publications, contact your county's UF/IFAS Extension office. U.S. Department of Agriculture, UF/IFAS Extension Service, University of Florida, IFAS, Florida A \& M University Cooperative Extension Program, and Boards of County Commissioners Cooperating. Nick T. Place, dean for UF/IFAS Extension.

