Reproductive toxicity and estrogen activity in Japanese medaka (*Oryzias latipes*) exposed to environmentally relevant concentrations of octocrylene

Saihong Yan, Mengmeng Liang, Rui Chen, Xiangsheng Hong, Jinmiao Zha

PII: S0269-7491(19)33879-5

DOI: https://doi.org/10.1016/j.envpol.2020.114104

Reference: ENPO 114104

To appear in: Environmental Pollution

Received Date: 17 July 2019

Revised Date: 14 January 2020

Accepted Date: 29 January 2020

Please cite this article as: Yan, S., Liang, M., Chen, R., Hong, X., Zha, J., Reproductive toxicity and estrogen activity in Japanese medaka (*Oryzias latipes*) exposed to environmentally relevant concentrations of octocrylene, *Environmental Pollution* (2020), doi: https://doi.org/10.1016/j.envpol.2020.114104.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

1	Reproductive toxicity and estrogen activity in Japanese medaka (Oryzias latipes)
2	exposed to environmentally relevant concentrations of Octocrylene
3	Saihong Yan ^{a,b,c} , Mengmeng Liang ^{a,b,c} , Rui Chen ^{a,b,c} , Xiangsheng Hong ^{a,b,c} , Jinmiao
4	Zha ^{a,b*}
5	
6	^a Key Laboratory of Drinking Water Science and Technology, Research Center for
7	Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
8	^b Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research
9	Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing
10	100085, China
11	^c University of Chinese Academy of Sciences, Beijing 100085, China
12	
13	* Corresponding author: Jinmiao Zha
14	
15	Address: Key Laboratory of Drinking Water Science and Technology, Research
16	Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18
17	Shuangqing Road, Haidian District, Beijing, 100085, China.
18	
19	Tel: +86-10-62849107
20	Fax: +86-10-62849140

- 21 Email: jmzha@rcees.ac.cn; jinmiaozha@gmail.com
- 22

23	Abstract: The growing use of octocrylene (OC) in sunscreens has posed a great threat
24	to aquatic organisms. In the present study, to assess its reproductive toxicity and
25	mechanism, paired Japanese medaka (Oryzias latipes) (F0) were exposed to OC at
26	nominal concentrations of 5, 50, and 500 $\mu\text{g/L}$ for 28 d. Significant increases were
27	observed in the gonadosomatic index (GSI) and hepatosomatic index (HSI) of F0
28	medaka at 500 μ g/L OC ($p < 0.05$) without significant differences in fecundity. The
29	fertility was significantly decreased at all treatments ($p < 0.05$). Significant increases
30	in the percent of mature oocytes were observed at 5 and 500 μ g/L OC, in which
31	contrary to the percent of spermatozoa ($p < 0.05$). The plasma sex hormones and
32	vitellogenin levels significantly increased in males at all treatments and in females at
33	50 and 500 μ g/L OC ($p < 0.05$). In addition, the levels of <i>fsh</i> β and <i>lh</i> β in the brains
34	and the levels of <i>fshr</i> , <i>lhr</i> and <i>cyp17</i> α in the gonads were significantly upregulated in
35	males at all treatments ($p < 0.05$), in line with those of ar , $er\alpha$, $er\beta$ and $cyp19\beta$ in the
36	brains of male and female. The upregulation of vtg in male and female livers was
37	observed only at 500 μ g/L OC and upregulation of <i>star</i> and <i>hsd3</i> β was observed in
38	testis at all treatments ($p < 0.05$). Continued exposure to OC significantly induced
39	increases in the time to hatching, morphological abnormality rates, and cumulative
40	death rates of F1 embryos, inconsistent with body length of F1 larvae ($p < 0.05$).
41	Therefore, the responses of the exposed fish at the biochemical and molecular levels
42	indicated reproductive toxicity and estrogenic activity of OC, providing insights into
43	the mechanism of OC.

44 Capsule: OC induced reproductive toxicity and exhibited estrogen activity in

- 45 Japanese medaka (*Oryzias latipes*) at relevant environmental concentrations.
- 46 Keywords: Octocrylene; Japanese medaka (*Oryzias latipes*); Embryonic development;
- 47 Endocrine disrupting; Histopathology
- 48

Journal Prevention

49 1. Introduction

50	With the increased public awareness of excessive sun radiation hazards, UV
51	filters (UVFs) have been promoted for extensive use in personal care products,
52	cosmetics, and other products for protection from UV irradiation (Langford et al.,
53	2015; Sunyer et al., 2019). Therefore, large amounts of UVFs enter the aquatic
54	environment directly or indirectly (Santos et al., 2012). Due to their stability in
55	aquatic environments, most UVFs are difficult to completely remove in a wastewater
56	treatment plant, which causes UVFs (e.g., octocrylene) to be frequently detected in
57	aquatic ecosystems (Brausch and Rand, 2011; Gago-Ferrero et al., 2013; Ebele et al.,
58	2017), and some UV filters were found at concentrations up to 40 μ g/L in river waters
59	and swimming pools (Ekpeghere et al., 2016). With the high detected concentrations
60	of UVFs, their impacts on aquatic ecosystems have received ongoing attention in
61	invertebrates.

Octocrylene (OC) is the most commonly used UV filter in many countries 62 because of its high absorptive efficiency for UVA and UVB light, and it is frequently 63 detected in aquatic environments due to its high lipophilicity, stability, and resistance 64 to sunlight degradation, which has attracted significant attention in the environmental 65 protection field (Gago-Ferrero et al., 2013). Previous studies have reported that OC 66 can easily accumulate in aquatic organisms due to its high lipophilicity ($log_{Kow} = 6.9$), 67 at a level of 2400 ng/g lipid weight (l.w.) in brown trout (Buser et al., 2006), 89~782 68 ng/g (l.w.) in Franciscana dolphins (Gago-Ferrero et al., 2013), and 25~11,875 ng/g 69 body weight in cod (Langford et al., 2015). The detected concentrations of OC range 70

71	from ng/L to μ g/L (Apel et al., 2018), such as at levels from 103 to 6812 ng/L in
72	seawater from Hong Kong (Tsui et al., 2015), the high concentration of 167 ng/L in
73	tap water (Díaz-Cruz et al., 2012), an average of 38 μ g/L in (household) gray water
74	(Hernández-Leal et al., 2010) and up to 12 μ g/L in wastewater (Magi et al., 2013). In
75	addition, Zhang et al. (2016) reported 1.8 $\mu\text{g/L}$ OC in the effluent of domestic
76	wastewater treatment plants. Therefore, the incomplete removal of UVFs in
77	wastewater treatment plants leads to their continuous discharge to environmental
78	systems, which poses great threats to aquatic organisms (Hopkins et al., 2017).
79	Although frequent detection in the aquatic environment occurs, unfortunately,
80	little information on the toxic effects of OC have been reported in aquatic species
81	(Blüthgen et al., 2014). OC can trigger the production of potentially harmful free
82	radicals (reactive oxygen species) when it releases its absorbed energy (Gago-Ferrero
83	et al., 2015). Previous studies have reported that some UVFs have oxidative hepatic
84	toxicity (Liu et al., 2015), hormonal activities (Zhang et al., 2016), and
85	bio-accumulation (Gago-Ferrero et al., 2015) and can affect nuclear receptors,
86	transcripts of responsive genes, levels of steroidogenesis (Zucchi et al., 2011; Christen
87	et al., 2011; Kim et al., 2014) and reproduction in fish (Weisbrod et al., 2007;
88	Grabicova et al., 2013). In addition, Stien et al. (2019) reported that OC could
89	accumulate in the tissues of Pocillopora damicornis in the form of fatty acid
90	conjugates and induce cell mitochondrial dysfunction by metabolomics. Although
91	previous studies have reported the potential toxicity of OC, its adverse effects and
92	modes of action are still poorly understood. Fish reproduction and development play

93	important roles in predicting ecosystem population variation (Overturf et al., 2015).
94	Therefore, the potential risks associated with OC may need to be concentrated on its
95	possible reproductive and development effects in fish once it accumulates in the
96	bodies of aquatic animals.
97	Japanese medaka (Oryzias latipes) have been used as a model for many years in
98	systems to evaluate the chemicals in water due to its advantages (Zhang et al., 2008;
99	Papoulias et al., 2014). Therefore, our objective was to assess reproductive toxicity of
100	OC in Japanese medaka at environmentally relevant concentrations (5, 50, 500 μ g/L).
101	Many endpoints were achieved, including histological changes, plasma steroid
102	hormones and VTG, and transcripts of HPG axis-related genes. Finally, the
103	underlying mechanism of OC in fish was preliminary illustrated based on these
104	endpoints.
105	2. Materials and methods
106	2.1. Chemicals
107	OC (CAS No. 6197-30-4, purity > 99%) was purchased from J&K Chemical Ltd.
108	(Beijing, China). Stock solutions were prepared in ethanol (100%) and the final
109	concentration of ethanol was less than 0.01% in the exposure solutions.
110	2.2. Maintenance of medaka and exposure
111	The Japanese medaka (d-rR) stock used in the present study was provided by the

Laboratory of Freshwater Fish, Bioscience Center of Nagoya University in Japan. The broodstock was cultured in dechlorinated tap water (pH: 7.2-7.6; 44.0-61.0 mg CaCO₃/L; temperature: 25 ± 2 °C) with flow-through systems in a photoperiod of

115	16:8 h (light: dark). Fish were fed twice daily with a combination of commercial flake
116	fish food (Trea, Germany) and newly hatched brine shrimp (Artemia nauplii).
117	Japanese medaka (approximately 3-4 months old) were chosen to breed in pairs
118	in 18 L glass aquaria and acclimated for 2 weeks. The conditions were the same as the
119	brood stock. Then, 300 breeding pairs of mature medaka with similar and high levels
120	fecundity and fertility were selected to carry out the reproductive test and were
121	randomly divided into five groups equally, including solvent control, negative control
122	and three exposure groups (5, 50 and 500 μ g/L). Each group contained 20 breeding
123	pairs of mature medaka, fifteen pairs of which were in an 18 L glass aquarium and 5
124	pairs of which were in five 1-L beakers. Each group contained three replicate aquaria.
125	The exposure solutions were changed daily to clean the feces and food particles
126	during 28 d exposure. The eggs were quickly collected in each beaker within 4 h after
127	fertilization at the 21 st exposure and counted to calculate fertilization rate. Then, the
128	fertilized eggs were equally divided into two parts to assess the developmental
129	toxicity of OC. One-half of the fertilized eggs were hatched in dechlorinated tap water,
130	and the other half continued their exposure to OC with the same concentration as their
131	parents.

After 28 d exposure, 20 breeding pairs of mature medaka in each group were sacrificed in a 200 mg/L MS-222. The tissue samples (brain, liver and gonad) and the blood from each fish were obtained for further analysis. The development indices of the embryos and larvae were recorded or measured at 14 d post hatching (dph), including hatchability, time to hatching, morphological abnormality rates, body length

137	and cumulative death rates. The solvent control is not significantly different from the
138	negative control and the data of solvent control are not shown in the results. The
139	present study was conducted according to the Guide for the Care and Use of
140	Laboratory Animals.
141	2.3. Chemical analysis
142	According to Zhang et al. (2016), the concentration of OC in exposure water was
143	measured by high-performance liquid chromatography (HPLC) with a Hypersil
144	BDS-C18 column (4.6 mm×250 mm, 5 μ m particle size) coupled to a UV detector at
145	290 nm. Each treatment group was taken 200 mL of exposure water at the beginning
146	(0 h) and prior to water renewal (24 h). Three water sample replications from each
147	group were made. Water samples were condensed by solid-phase extraction with
148	Agilent C18 (500 mg and 3 cc) cartridges and dried with N_2 . The extraction was then
149	resuspended in 1 mL of methanol and stored in the dark at 4 °C. 20 μL of each
150	extracted sample was injected in duplicate and finished in 12 min.
151	2.4. Gonadosomatic index and hepatosomatic index
152	The gonadosomatic index (GSI) and hepatosomatic index (HSI) were calculated
153	according to Liang et al. (2014) and the formula is as follows.
154	GSI (%) = (gonad weight (g) / body weight (g)) $\times 100$
155	HSI (%) = (liver weight (g) / body weight (g)) $\times 100$
156	2.5. Histological analysis
157	Before analyzed, the gonad tissues from 9 mature medaka of each sex were
158	sampled, fixed and paraffin-embedded (Yan et al., 2018). Then, tissues were

159	dehydrated in increasing concentrations of ethanol (50%, 70%, 80%, 90%, 95%,
160	100%) and embedded in paraffin. Paraffin sections (4-5 μ m) were cut and stained with
161	hematoxylin and eosin (H&E). Photos of the sections from three randomly selected
162	fields of vision were taken with a BX53 optical microscope (Olympus, Tokyo, Japan)
163	and analyzed with cellSens Standard imaging software (Olympus, Tokyo, Japan).
164	2.6. Measurement of plasma vitellogenin and sex steroid hormones levels
165	The blood from 20 mature fish of each sex was collected and determined as
166	described by Chen et al. (2016). Plasma vitellogenin (VTG), estradiol (E2) and
167	11-ketotestosterone (11-KT) levels were determined by a fish VTG enzyme-linked
168	immunosorbent assay (ELISA) kit (Cusabio, Wuhan, Hubei, China), fish E2 ELISA
169	kit (Cusabio, Wuhan, Hubei, China) and fish 11-KT ELISA kit (Nanjing Jiancheng,
170	China), respectively, following the manufacturer's recommendations. The optical
171	density of the reaction solution was measured at 450 nm.

172 2.7. Real-time PCR analysis

173 Tissue samples (brain, liver and gonad) of 10 mature medaka (female:male=1:1) 174 from each treatment were stored in TRIzol reagent (Life Technology) to extract the total RNA according to Yan et al. (2018). 2 µg of total RNA from each sample was 175 176 reverse transcribed to cDNA in line with the manufacturer's instructions (Promega) and stored at -80 °C for RT-qPCR analysis. RT-qPCR analysis was performed with a 177 178 three-step profile according to the method of Yan et al. (2018). 20 µL reaction solution 179 contained SYBR Green Master Mix (Vazyme Biotech, Nanjing, China), Rox Reference Dye 2, forward and reverse primer and was reacted in a 7500 real-time 180

181	PCR system (Applied Biosystems, California, USA). The primer pairs used for
182	real-time PCR are shown in Table S1. Ribosomal protein L7 (RPL7) RNA was used
183	as a reference gene for normalization (Zhu et al., 2015) and the results of the mRNA
184	expression were calculated by the previously described method of $2^{-\Delta\Delta ct}$ (Livak and
185	Schmittgen, 2001).
186	2.8. Data analysis and statistics
187	Data were analyzed with SPSS 19.0 (SPSS, Chicago, IL, USA) and illustrated
188	graphically by OriginPro 8.0 (OriginLab, Northampton, MA, USA). Results are
189	expressed as the mean \pm standard error of the mean (S.E.M.). After checked normality
190	and homogeneity of variance, all data were analyzed by one-way analysis of variance

(ANOVA) with Turkey's HSD and Duncan's multiple comparisons test. Differences

were considered statistically significant at the level of p < 0.05.

193 **3. Results**

191

194 *3.1. Analysis of OC in exposure water*

OC concentrations were not detected in the negative control and solvent control samples. The actual concentrations (mean \pm standard deviation, % before/after renewal of the exposure solution) of OC were 2.71±0.32 (54%), 14.29±1.53 (29%) and 232.62±7.51 (47%) μ g/L at nominal concentrations of 5 μ g/L, 50 μ g/L and 500 μ g/L, respectively.

200 3.2. Reproductive effects

Significant decreases in the fecundity of adult Japanese medaka were observed in all OC treatment groups (p < 0.05). However, the fertility showed no significant

203	changes at all treatment levels compared with that of the controls (Fig. 1). The results
204	of the F1 embryo development in dechlorinated tap water (Table 1) or in the same
205	concentrations of OC as their parents (Table 2) were recorded. No significant changes
206	were observed in hatchability, time to hatching, and morphological abnormality rates
207	of F1 embryos compared with control groups, similar to the F1 larvae body length
208	results (14 dph) (Table 1). However, cumulative death rates of F1 embryos in
209	dechlorinated tap water with parental exposure to 500 μ g/L OC were significantly
210	increased ($p < 0.05$, Table 1). Meanwhile, a decreasing trend with no significant
211	changes in hatchability of the F1 embryos was observed with increasing
212	concentrations of OC (Table 2). Significant increases in the time to hatching and
213	morphological abnormality rates of F1 embryos were observed at 50 and 500 μ g/L
214	OC, similar to the cumulative death rates of F1 embryos at all treatment
215	concentrations ($p < 0.05$, Table 2). The body lengths of F1 larvae at 14 dph were
216	significantly reduced at all treatment concentrations ($p < 0.05$, Table 2).

217 *3.3. Growth and development of adult medaka*

The body lengths and body weights in both male and female medaka were not significantly different at all treatment concentrations, which is similar to the GSI and HSI in male medaka at all treatments (Table S2). The GSI and HSI of female medaka did not significantly increase at 5 and 50 μ g/L OC, whereas they significantly increased at 500 μ g/L OC (p < 0.05, Table S2).

223 *3.4. Histopathology*

224 Different stage oocytes in ovarian tissues, such as primary oocytes (POs),

225	previtellogenic oocytes (PVOs), vitellogenic oocytes (VOs), mature oocytes (MOs)
226	and degenerating vitellogenic oocytes (DOs), were observed in all treatment groups
227	(Fig. 2A-D). Significant decreases in the percent of MOs and POs were observed at
228	500 μ g/L OC ($p < 0.05$, Fig. 2E), similar to those of VOs at 5 μ g/L OC ($p < 0.05$, Fig.
229	2E). In addition, the testes of adult medaka mainly included spermatogonia (SG),
230	spermatocytes (SC), spermatids (ST) and spermatozoa (SZ), whose histopathology is
231	shown in Fig. 2F-J. No significant changes in the percent of SG and ST were
232	observed at all treatments (Fig. 2J). Significant increases were observed in the percent
233	of both SC at 500 μ g/L OC and SZ at 5 μ g/L OC ($p < 0.05$, Fig. 2J). However, the
234	percent SZ at 500 μ g/L OC significantly decreased ($p < 0.05$, Fig. 2J).
235	3.5. Plasma steroid hormones and vitellogenin levels
236	The levels of VTG and E2 were significantly increased in males at all treatments
237	and in females at 50 and 500 μ g/L OC ($p < 0.05$, Fig. 3). Significantly increase in
238	11-KT level was found in females at all treatments and in males at 50 and 500 μ g/L
239	OC. No significant changes were observed in the VTG and E2 levels of females at 5
240	μ g/L OC (Fig. 3). The levels of 11-KT were significant decreased in males at 5 μ g/L
241	OC (<i>p</i> < 0.05, Fig. 3).

242 *3.6. Transcripts of HPG axis-related genes*

In the brains, the androgen receptor $(ar\alpha)$, estrogen receptors $(er\alpha \text{ and } er\beta)$ and cytochrome P450 aromatase 19β $(cyp19\beta)$ mRNA levels were significantly increased in females at all treatments, similar to the expressions of $ar\alpha$, $er\alpha$ and $er\beta$ in males at all treatments (p < 0.05, Fig. 4 and Table S3). The expressions of follicle stimulating

247	hormone β (<i>fsh</i> β) and luteinizing hormone β (<i>lh</i> β) in females were significantly
248	decreased at 50 μ g/L OC, contrary to those at 5 and 500 μ g/L OC ($p < 0.05$, Fig. 4 and
249	Table S3). The expressions of $fsh\beta$ and $lh\beta$ in males were significantly increased at 5
250	and 50 μ g/L OC (<i>p</i> < 0.05, Fig. 4 and Table S3).
251	In the livers, significant increases in females were observed in the levels of $er\alpha$,
252	vtg and steroidogenic acute regulator (star) at all treatments ($p < 0.05$, Fig. 4 and
253	Table S3), similar to those of $er\beta$ at 5 and 500 μ g/L OC and contrary to those of $ar\alpha$ at
254	all treatments ($p < 0.05$, Fig. 4 and Table S3). Significant increases in males were
255	observed in the levels of star at 5 and 50 μ g/L OC and era at 50 and 500 μ g/L
256	treatments, similar to those of $ar\alpha$ at 50 μ g/L OC and vtg at 500 μ g/L OC ($p < 0.05$,
257	Fig. 4 and Table S3). Significant decreases in males were found in the levels of $ar\alpha$ at
258	5 and 500 μ g/L OC and in <i>er</i> β at all treatments, similar to that of <i>star</i> at 500 μ g/L OC
259	(p < 0.05, Fig. 4 and Table S3).

260	In the gonads, significant decreases in the ovary were observed in the
261	expressions of $ar\alpha$, $er\alpha$, $er\beta$, $cyp17\alpha$, follicle stimulating hormone receptor (<i>fshr</i>) and
262	luteinizing hormone receptor (<i>lhr</i>) at 50 and 500 μ g/L OC, similar to those of <i>3βhsd</i> at
263	50 μ g/L OC and <i>star</i> at 5 and 50 μ g/L OC ($p < 0.05$, Fig. 4 and Table S3). Similarly,
264	the expressions of vtg at all treatments significantly decreased in the ovary and testis
265	$(p < 0.05, \text{Fig. 4} \text{ and Table S3})$. Significant increases in the expressions of $ar\alpha$, $er\beta$,
266	$cyp17\alpha$, $3\beta hsd$, $fshr$ and lhr were observed in the ovary at $5 \mu g/L$ OC ($p < 0.05$, Fig. 4
267	and Table S3), similar to those of <i>fshr</i> at 50 and 500 μ g/L OC, and those of <i>ara</i> , <i>era</i> ,
268	$er\beta$, $cyp17\alpha$, $3\beta hsd$, star and lhr at all treatments in the testis. ($p < 0.05$, Fig. 4 and

269 Table S3).

270 4. Discussion

OC has been reported as an endocrine disrupting chemical (EDC) (Wang et al., 2016); however, its toxicity and related mechanism of action on Japanese medaka at relevant environmental concentrations are still unknown. In the current study, OC can induce the reproductive toxicity and estrogen activity in Japanese medaka according to multiple measured endpoints.

276 4.1. Chemical Analysis of OC in exposure water

In the present study, the OC was significantly decreased compared with the 277 278 nominal concentrations during the exposure. Zhang et al. (2016) have indicated the 279 similar results on the decreased OC levels were only found in the exposure water with 280 zebrafish. In addition, Gomez et al. (2012) has reported that OC is rapid uptake by 281 organism, but is followed by elimination within 24 h and excreted to some extent. 282 Therefore, this result can be induced by uptake into zebrafish or adsorption to surplus 283 food or faeces (Zhang et al., 2016) and metabolism and/or excretion in vivo 284 (Gago-Ferrero et al., 2015).

285 *4.2.Reproductive effects*

The fecundity of fish is important to predict the population variation (Overturf et al., 2015) and many environmental factors can mediate the overall reproductive fitness of organisms. As reported by Overturf et al. (2015), hormonally active UVFs have impaired fish reproduction. In the current study, OC had reproductive toxicity due to the decreased fecundity and significantly decreased fertility. Similar results

291	have also been reported in medaka exposed to benzophenone-3 (BP-3) for 28 d (Kim
292	et al., 2014) and in fathead minnows following 74 and 285 $\mu\text{g/L}$ 3-benzylidene
293	camphor treatments for 21 d (Kunz et al. 2006), as did benzophenone-2 (> 1.2 mg/L)
294	for 15 d (Weisbrod et al. 2007). In the present study, OC significantly induced
295	increases in the time to hatching, morphological abnormality rates and cumulative
296	death rates of F1 embryos (p <0.05). Similarly, Torres et al. (2016) reported that
297	3-(4-Methylbenzylidene) camphor (4-MBC) induced malformation development and
298	extended the hatching time of zebrafish embryo exposed to 5 mg/L or higher
299	concentrations of 4-MBC. Moreover, 4-MBC also induced developmental
300	malformations in frog Pelophylax perezi eggs (Martins et al., 2017). In addition,
301	4-MBC significantly inhibited the lengths of zebrafish larvae at concentrations higher
302	than 2 μ g/L (Torres et al., 2016), which is similar to our results. In addition, endocrine
303	disrupting chemicals (EDCs) can alter the reproductive capabilities of nontarget
304	organisms, specifically fish, at environmentally relevant concentrations and adversely
305	affect the population of aquatic organisms (Overturf et al., 2015). Therefore, our
306	findings reflected that OC exhibited reproductive and developmental toxicity to
307	medaka that are severe enough to potentially affect fish populations.

308 *4.2. Histopathology*

Histopathology is an important method for environmental and ecological risk assessment by examining early changes in morphology (Guardiola et al., 2013a) and has been used to evaluate the toxic effects of various contaminants on tissue organs (Velma and Tchounwou, 2010; Guardiola et al., 2013b). In the present study,

313	significant decreases in the percent of MOs and POs at 500 μ g/L OC or VOs at 5 μ g/L
314	OC indicated that OC impaired ovary composition, similar to the results of 394 μ g/L
315	EHMC in female fathead minnows (Christen et al., 2011). Similar to OC, inhibition of
316	testicular development was observed in EE2-exposed fish (Pawlowski et al., 2004;
317	Jackson et al., 2019), BP-3-exposed fish (Christen et al., 2011) and
318	4-nonylphenol-exposed fish, which reduced the fecundity of fish (Harries et al., 2000).
319	Similarly, alterations have been reported in different fish species from contaminated
320	environments, which might result from environmental chemicals in their living
321	environments (Ameur et al., 2012). Therefore, OC may exhibit an estrogenic or
322	antiandrogenic effect, which could induce the reproductive toxicity.
323	4.3. Plasma sex steroid hormones and vitellogenin levels
324	Sex steroid hormones (such as testosterone (T) and 17b-estradiol (E2)) could be
325	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013),
325 326	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish
325 326 327	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g.,
325 326 327 328	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g., 11-ketotestosterone (11-KT)) (Miura et al., 1991). Many environmental toxicants have
325326327328329	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g., 11-ketotestosterone (11-KT)) (Miura et al., 1991). Many environmental toxicants have been reported to have adverse effects on the synthesis and release of T and E2 in adult
 325 326 327 328 329 330 	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g., 11-ketotestosterone (11-KT)) (Miura et al., 1991). Many environmental toxicants have been reported to have adverse effects on the synthesis and release of T and E2 in adult zebrafish (Liang et al., 2014; Zhao et al., 2015). Similar to OC, 90 μ g/L BP-3 induced
 325 326 327 328 329 330 331 	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g., 11-ketotestosterone (11-KT)) (Miura et al., 1991). Many environmental toxicants have been reported to have adverse effects on the synthesis and release of T and E2 in adult zebrafish (Liang et al., 2014; Zhao et al., 2015). Similar to OC, 90 μ g/L BP-3 induced reproductive effects on medaka after 28 d by affecting plasma sex steroid hormones
 325 326 327 328 329 330 331 332 	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g., 11-ketotestosterone (11-KT)) (Miura et al., 1991). Many environmental toxicants have been reported to have adverse effects on the synthesis and release of T and E2 in adult zebrafish (Liang et al., 2014; Zhao et al., 2015). Similar to OC, 90 μ g/L BP-3 induced reproductive effects on medaka after 28 d by affecting plasma sex steroid hormones and VTG levels (Kim et al., 2014). Plasma VTG is synthesized in fish livers during
 325 326 327 328 329 330 331 332 333 	used to evaluate reproductive effects in fish (Lubzens et al., 2010; Wang et al., 2013), and affect fish gonadal development (Shang et al., 2006) by directly regulating fish spermatogenesis (Liu et al., 2018), which is largely regulated by androgens (e.g., 11-ketotestosterone (11-KT)) (Miura et al., 1991). Many environmental toxicants have been reported to have adverse effects on the synthesis and release of T and E2 in adult zebrafish (Liang et al., 2014; Zhao et al., 2015). Similar to OC, 90 μ g/L BP-3 induced reproductive effects on medaka after 28 d by affecting plasma sex steroid hormones and VTG levels (Kim et al., 2014). Plasma VTG is synthesized in fish livers during exposure to estrogen and plays an important role in ovarian development, oocyte

335	suggest that an increase in VTG levels in females help to promote ovarian
336	development, while increased VTG levels in males can result from estrogenic or
337	antiandrogenic chemicals, which suppresses testicular development and sperm
338	maturation (Barucca et al., 2006). Similarly, 9.91, 99.1 and 991 mg/L 4-MBC
339	increased plasma VTG levels in male medaka (Inui et al., 2003), as did 268 μ g/L
340	BP-3 in adult male zebrafish during 12 d exposure (Kinnberg et al., 2015). E2 is
341	related to VTG expression, which is regulated by ER signaling pathways (Yan et al.,
342	2018), which could illustrate our results of E2 and VTG levels in female and male
343	medaka. Therefore, the reproductive effects of OC on Japanese medaka may result
344	from the significantly increased 11-KT levels in females, leading to decreased
345	fecundity at all treatments. In addition, OC increased levels of sex hormones and
346	exhibited estrogenic activity in medaka, which caused the significantly reduced
347	number of spermatozoa and arrested fish spermatogenesis (Liu et al., 2018; Yin et al.,
348	2017).

349 *4.4. Transcripts of the HPG axis-related genes*

Reproductive activity could be regulated by the hypothalamus-hypophysis (pituitary gland)-gonadal (HPG) axis, which coordinates the action of gonadotropin-releasing hormone from hypothalamus and two gonadotropins (luteinizing hormone (LH) and follicle-stimulating hormone (FSH)) in the pituitary (Wang et al., 2019). LH and FSH play vital roles in steroidogenesis and gametogenesis of the gonads by combining FSHR and LHR (Yan et al., 2018), which may lead to the increased 11-KT levels in the present study (Ji et al., 2013). This

357	result could be explained by the increased plasma E2 levels in females and males
358	according to the upregulated levels of $fsh\beta$, $lh\beta$, $fshr$ and lhr in the present study.
359	Similar to our results, Zucchi et al. (2011) reported significantly upregulated vtg1
360	expression in adult male zebrafish livers exposed to 2.2 and 890 μ g/L EHMC for 14 d.
361	Therefore, exposure to OC induced alterations in the upstream genes involved in the
362	HPG axis, leading to the response of downstream genes.

Involved in the reproduction process, er and ar are located in the cytoplasm and 363 cell nucleus and combine with the relative hormone gland to regulate the levels of 364 365 target genes in the ER/AR signaling pathways (Li et al., 2016), which also affect the reproductive and developmental toxicity (Yan et al., 2018). In the current study, the 366 expressions of $er\alpha$ and $er\beta$ in the testis were significantly increased at all treatments, 367 consistent with the results of OC in zebrafish (Zhang et al., 2016) and is partially 368 369 responsible for the histological changes in the testes of the exposed fish. Exposure to OC could affect the expression of the genes involved in fish steroidogenesis; for 370 371 example, star and $hsd3\beta$. StAR is involved in regulating steroidogenesis by 372 transferring cholesterol across the mitochondrial membrane (Yan et al., 2018), and 373 $hsd3\beta$ can further catalyze pregnenolone to synthesize progesterone, leading to the synthesis of 11-KT and E2 (Liang et al., 2014). The upregulation of star and $hsd3\beta$ 374 375 expression in males can explain the increase in 11-KT and E2. $Cyp19\beta$ is known to be 376 a sensitive signal of estrogens in aquatic environment (Diotel et al., 2010), and previous studies have reported that estrogens can promote $cyp19\beta$ expression in adult 377 zebrafish brains (Mouriec et al., 2009; Callard et al., 2001). In addition, $cyp19\beta$ also 378

381 synthesis of testosterone is responsible for $cyp17\alpha$ (Martinez-Arguelles et al., 2013).

The increased E2 and 11-KT levels in females and males in the present study can be explained by the upregulation of $cyp19\beta$ and $cyp17\alpha$ and can be interpreted as an estrogenic response (Zhang et al., 2016). Therefore, these results in the HPG axis further demonstrate that OC has estrogenic activity and reproductive toxicity.

386 **5.** Conclusion

379

380

The present study reveals that OC inhibited SZ synthesis and promoted MO maturation by histopathology, increased plasma sex steroid hormone (E2 and 11-KT) and VTG levels, and upregulated the expression of HPG-axis genes related to steroidogenesis and reproduction both in female and male medaka, which shows that OC poses a great threat to the reproductive system of medaka and adversely affects their development.

393 Acknowledgments

This work was supported by the National Natural Science Foundation of China (21677165), the Major International Joint Research Project of the National Natural Science Foundation of China (51420105012).

397 Supplementary material

The detailed materials and methods are shown in part one of Supplementary material and supplemental tables were in part two; Detail information of primer sequences and product size used for Japanese medaka (*Oryzias latipes*) (Table S1);

- 401 Growth and development results of F0 adult medaka exposed to 5, 50, and 500 μ g/L
- 402 OC for 28 d (Table S2); Relative gene expression levels in the brains, livers and
- 403 gonads of F0 adult medaka after exposure to OC for 28 d (Table S3).
- 404

Journal Prespool

405 **References**

- 406 Ameur, W.B., de Lapuente, J., Megdiche, Y.E., Barhoumi, B., Trabelsi, S., Camps, L., Serret, J.,
- Ramos-L Ram, D., Gonzalez-Linares, J., Driss, M.R., Borràs, M., 2012. Oxidative stress,
 genotoxicity and histopathology biomarker responses in mullet (*Mugil cephalus*) and sea bass
 (*Dicentrarchus labrax*) liver from Bizerte Lagoon (Tunisia). Mar. Pollut. Bull. 64, 241-251.
- 410 Apel, C., Tang, J.H., Ebinghaus, R., 2018. Environmental occurrence and distribution of organic
- 411 UV stabilizers and UV filters in the sediment of Chinese Bohai and Yellow Seas. Environ.
 412 Pollut. 235, 85-94
- Barucca, M., Canapa, A., Olmo, E., Regoli, F., 2006. Analysis of vitellogenin gene induction as a
 valuable biomarker of estrogenic exposure in various Mediterranean fish species. Environ.
 Res. 101 (1), 68-73.
- Blüthgen, N., Meili, N., Chew, G., Odermatt, A., Fent, K., 2014. Accumulation and effects of the
 UV-filter octocrylene in adult and embryonic zebrafish (*Danio rerio*). Sci. Total.
 Environ. 476, 207-217.
- Brausch, J.M., Rand, G.M., 2011. A review of personal care products in the aquatic environment:
 Environmental concentrations and toxicity. Chemosphere 82, 1518-1532.
- Buser, H.R., Balmer, M.E., Schmid, P., Kohler, M., 2006. Occurrence of UV filters
 4-methylbenzylidene camphor and OCocrylene in fish from various Swiss rivers with inputs
 from wastewater treatment plants. Environ. Sci. Technol. 40, 1427-1431.
- 424 Callard, G.V., Tchoudakova, A.V., Kishida, M., Wood, E., 2001. Differential tissue distribution,
- developmental programming, estrogen regulation and promoter characteristics of *cyp19*genes in teleost fish. Tj. Steroid Biochem. Mol. Biol. 79, 305-314.
- Chen, R., Liu, C., Yuan, L., Zha, J., Wang, Z., 2016. 2, 4-Dichloro-6-nitrophenol, a photonitration
 product of 2, 4-dichlorophenol, caused anti-androgenic potency in Chinese rare minnows
 (*Gobiocypris rarus*) Environ. Pollut. 216, 591-598.
- 430 Christen, V., Zucchi, S., Fent, Κ., 2011. Effects of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) on expression of genes involved in hormonal 431 pathways in fathead minnows (Pimephales promelas) and link to vitellogenin induction and 432 433 histology. Aquat. Toxicol. 102,167-176.

434 Díaz-Cruz, M.S., Gago-Ferrero, P., Llorca, M., Barceló, D., 2012. Analysis of UV filters in tap 435 water and other clean waters in Spain. Anal. Bioanal. Chem. 402, 2325-2333. 436 Diotel, N., Le Page, Y., Mouriec, K., Tong, S.K., Pellegrini, E., Vaillant, C., Anglade, I., Brion, 437 F., Pakdel, F., Chung, B.C., Kah, O., 2010. Aromatase in the brain of teleost fish: expression, 438 regulation and putative functions. Front. Neuroendocrin. 31, 172-192. 439 Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S., 2017. Pharmaceuticals and personal care 440 products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants 3, 1-16 Ekpeghere, K.I., Kim, U.-J., S.-H, O., Kim, H.-Y., Oh, J.-E., 2016. Distribution and seasonal 441 442 occurrence of UV filters in rivers and wastewater treatment plants in Korea. Sci. Total. 443 Environ. 542, 121-128. 444 Gago-Ferrero, P., Alonso, M. B., Bertozzi, C.P., Marigo, J., Barbosa, L., Cremer, M., Secchi, E.R., 445 Azevedo, A., Lailson-Brito Jr., J., Torres, J.P.M., Malm, O., Eljarrat, E., Díaz-Cruz, M. S., 446 Barceló, D., 2013. First Determination of UV Filters in Marine Mammals. Octocrylene 447 Levels in Franciscana Dolphins. Environ. Sci. Technol. 47, 5619-5625 448 Gago-Ferrero, P., Díaz-Cruz, M. S., Barceló, D., 2015. UV filters bioaccumulation in fish from 449 Iberian river basins. Sci. Total. Environ. 518, 518-525. 450 Gomez, E., Bachelot, M., Boillot, C., Munaron, D., Chiron, S., de Casellas, C., Fenet, H., 2012. 451 Bioconcentration of two pharmaceuticals (benzodiazepines) and two personal care products 452 (UV filters) in marine mussels (Mytilus galloprovincialis) under controlled laboratory 453 conditions. Environ. Sci. Pollut. R. 7, 2561-2569. 454 Grabicova, K., Fedorova, G., Burkina, V., Steinbach, C., Schmidt-Posthaus, H., Zlabek, V., Kocour 455 Kroupova, H., Grabic, R., Randak, T., 2013. Presence of UV filters in surface water and the effects of phenylbenzimidazole sulfonic acid on rainbow trout (Oncorhychus mykiss) 456 457 following a chronic toxicity test. Ecotoxicol. Environ. Saf. 96, 41-47. 458 Guardiola, F.A., Cuesta, A., Meseguer, J., Martinez, S., Martinez-Sanchez, M.J., Perez-Sirvent, C., 459 Esteban, M.A., 2013a. Accumulation, histopathology and im- munotoxicological effects of 460 waterborne cadmium on gilthead seabream (Sparus aurata). Fish Shellfish Immun. 35, 461 792-800.

462 Guardiola, F.A., Gonzalez-Parraga, M.P., Cuesta, A., Meseguer, J., Martinez, S.,
463 Martinez-Sanchez, M.J., Perez-Sirvent, C., Esteban, M.A., 2013b. Immunotoxicological

- 464 effects of inorganic arsenic on gilthead seabream (*Sparus aurata*). Aquat.Toxicol. 134-135,
- 465 112-119.
- 466 Harries, J.E., Runnalls, T., Hill, E., Harris, C.A., Maddix, S., Sumpter, J.P., Tyler, C.R.,2000.
 467 Development of a reproductive performance test for endocrine disrupting chemicals using
 468 pair-breeding fathead minnows (*Pimephales promelas*). Environ. Sci. Technol. 34,
 469 3003-3011.
- Hopkins Z. R., Snowberger, S., Blaney L., 2017. Ozonation of the oxybenzone, octinoxate, and
 octocrylene UV-filters:Reaction kinetics, absorbance characteristics, and transformation
 products. J. Hazard. Mater. 338, 23-32.
- 473 Hernández Leal, L., Vieno, N., Temmink, H., Zeeman, G., Buisman, C.J.N., 2010. Occurrence of
- 474 Xenobiotics in Gray Water and Removal in Three Biological Treatment Systems. Environ.
 475 Sci.Technol. 44, 6835-6842.
- Inui, M., Adachi, T., Takenaka, S., Inui, H., Nakazawa, M., Ueda, M., Watanabe, H., Mori, C.,
 Iguchi, T., Miyatake, K., 2003. Effect of UV screens and preservatives on vitellogenin and
 choriogenin production in male medaka (*Oryzias latipes*). Toxicology 194, 43-50.
- 479 Jackson, L.M., Felgenhauer, B.E., Klerks, P. L., 2019. Feminization, altered gonadal development,
- and liver damage in least killifish (*Heterandria formosa*) exposed to sublethal concentrations
 of 17α-ethinylestradiol. Ecotoxicol. Environ. Saf. 170, 331-337.
- 482 Ji, K., Liu, X., Lee, S., Kang, S., Kho, Y., Giesy, J.P., Choi, K., 2013. Effects of non-steroidal
- anti-inflammatory drugs on hormones and genes of the hypothalamic-pituitary-gonad axis,
 and reproduction of zebrafish. J. Hazard. Mater. 254-255, 242-251.
- Kazeto, Y., Ijiri, S., Place, A.R., Zohar, Y., Trant, J.M., 2001. The 50-Flanking regions of
 CYP19A1 and CYP19A2 in zebrafish. Biochem. Biophys. Res. Commun. 288, 503-508.
- 487 Kim, S., Jung, D., Kho, Y., Choi, K., 2014. Effects of benzophenone-3 exposure on endocrine
 488 disruption and reproduction of Japanese medaka (*Oryzias latipes*)-a two generation exposure
 489 study. Aquat. Toxicol. 155, 244-252.
- 490 Kinnberg, K. L., Petersen, G. I., Albrektsen, M., Minghlani, M., Awad, S. M., Holbech, B.
- 491 F., Green, J. W., Bjerregaard, P., Holbech, H., 2015. Endocrine-disrupting effect of the
- 492 ultraviolet filter benzophenone-3 in zebrafish, Danio rerio. Environ. Toxicol. 34(12),
- 493 2833-2840.

\sim		D	$\mathbf{r} \mathbf{A}$ 1	nr		~ 1
υı					U	U 1

- 494 Kuhl, A.J., Manning, S., Brouwer, M., 2005. Brain aromatase in Japanese medaka (Oryzias
- 495 *latipes*): molecular characterization and role in xenoestrogen-induced sex reversal. J. Steroid

496 Biochem. Mol. Biol. 96, 67-77.

- Kunz, P.Y., Gries, T., Fent, K., 2006b. The ultraviolet filter 3-benzylidene camphor adversely
 affects reproduction in fathead minnow (*Pimephales promelas*). Toxicol. Sci. 93, 311-321.
- Langford, K.H., Reid, M.J., Fjeld, E., Oxnevad, S., Thomas, K.V., 2015. Environmental
 occurrence and risk of organic UV filters and stabilizers in multiple matrices in Norway.
- 501 Environ. Int. 80, 1-7.
- 502 Li, M.Y., Cao, J.L., Chen, J.J., Song, J., Zhou, B.R., Feng, C.P., Wang, J.D., 2016. Waterborne
- fluoride exposure changed the structure and the expressions of steroidogenic-related genes in
 gonads of adult zebrafish (*Danio rerio*). Chemosphere 145, 365-375.
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time
 guantitative PCR and the 2^{-△△CT} method. Methods 25, 402-408.
- Liang , X., Wang, M., Chen, X., Zha, J., Chen, H., Zhu, L., Wang, Z., 2014. Endocrine disrupting
 effects of benzotriazole in rare minnow (*Gobiocypris rarus*) in a sex-dependent manner.
 Chemosphere 112, 154-162.
- Liu, Z.H., Chen, Q.L., Chen, Q., Li, F., Li, Y.W., 2018. Diethylstilbestrol arrested
 spermatogenesis and somatic growth in the juveniles of yellow catfish (*Pelteobagrus fulvidraco*), a fish with sexual dimorphic growth. Fish Physiol. Biochem. 44, 789-803.
- Liu, H., Sun, P., Liu, H.X., Yang, S.G., Wang, L.S., Wang Z.Y., 2015. Hepatic oxidative stress
 biomarker responses in freshwater fish *Carassius auratus* exposed to four benzophenone UV
 filters. Ecotoxicol. Environ. Saf. 119, 116-122.
- Lubzens, E., Young, G., Bobe, J., Cerda, J., 2010. Oogenesis in teleosts: how eggs are formed.
- 517 Gen. Comp. Endocrinol. 165, 367-389.
- 518 Magi, E., Scapolla, C., Carro, M.D., Rivaro P., Nguyen, K.T.N., 2013. Emerging pollutants in
- aquatic environments: monitoring of UV filters in urban wastewater treatment plants. Anal.
 Methods 5(2), 428-433.
- 521 Martinez-Arguelles, D., Campioli, E., Culty, M., Zirkin, B., Papadopoulos, V., 2013. Fetal origin
- of endocrine dysfunction in the adult: the phthalate model. J. Steroid. Biochem. Mol. Biol.
- 523 137, 5-17.

- 524 Martins, D., Monteiro, M.S., Soares, A.M., Quintaneiro, C., 2017. Effects of 4-MBC and triclosan 525 in embryos of the frog *Pelophylax perezi*. Chemosphere 178, 325-332. 526 Miura, T., Yamauchi, K., Takahashi, H., Nagahama, Y., 1991. Hormonal induction of all stages of 527 spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. 528 USA 88, 5774-5778. 529 Mouriec, K., Gueguen, M.M., Manuel, C., Percevault, F., Thieulant, M.L., Pakdel, F., Kah, O., 530 2009. Androgens upregulate cyp19a1b (aromatase B) gene expression in the brain of 531 zebrafish (Danio rerio) through estrogen receptors. Biol. Reprod. 80, 889-896. 532 Overturf, M. D., Anderson, J. C., Pandelides, Z., Beyger, L., Holdway, D. A., 2015. 533 Pharmaceuticals and personal care products: A critical review of the impacts on fish 534 reproduction. Crit. Rev. Toxicol. 45(6), 469-491. 535 Papoulias, D.M., Tillitt, D.E., Talykina, M.G., Whyte, J., Richter, C.A., 2014. Atrazine reduces 536 reproduction in Japanese medaka (Oryzias latipes). Aquat. Toxicol. 154, 230-239.
- Pawlowski, S., Van Aerle, R., Tyler, C.R., Braunbeck, T., 2004. Effects of 17α-ethinylestradiol in a
 fathead minnow (*Pimephales promelas*) gonadal recrudescence assay. Ecotoxicol. Environ.
 Saf. 57(3), 330-345.
- Santos, A.J., Miranda, M.S., Esteves da Silva, J.C., 2012. The degradation products of UV
 filters in aqueous and chlorinated aqueous solutions. Water. Res. 46, 3167-3176.
- 542 Sunyer, A., González-Navarro, A., Pau Serra-Roig, M., Serrano, N., Díaz-Cruz, M.S., Díaz-Cruz, J.
- 543 M., 2019. First application of carbon-based screen-printed electrodes for the voltammetric
 544 determination of the organic UV filters oxybenzone and octocrylene. Talanta 196(1),
 545 381-388.
- Stien, D., Clergeaud, F., Rodrigues, A. M. S., Lebaron, K., Pillot, R., Romans, P., Fagervold, S.,
 Lebaron, P., 2019. Metabolomics Reveal That Octocrylene Accumulates in *Pocillopora damicornis* Tissues as Fatty Acid Conjugates and Triggers Coral Cell Mitochondrial
 Dysfunction. Anal. Chem. 91(1), 990-995.
- Shang, E.H., Yu, R.M., Wu, R.S., 2006. Hypoxia affects sex differentiation and development,
 leading to a male-dominated population in zebrafish (*Danio rerio*). Environ. Sci. Technol. 40,
 3118-3122.
- 553 Tsui, M.M.P., Lam, J. C.W., Ng, T.Y., Ang, P.O., Murphy, M.B., Lam, P. K.-S., Occurrence,

- distribution and fate of organic UV filters in coral communities. Environ. Sci. Technol. 51,
 4182-4190.
- Torres, T., Cunha , I., Martins , R., Santos, M.M., 2016. Screening the Toxicity of Selected
 Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban.
 Int. J. Mol. Sci. 17, 1762.
- Velma, V., Tchounwou, P.B., 2010. Chromium-induced biochemical, genotoxic and
 histopathologic effects in liver and kidney of goldfish, *Carassius auratus*. Mutat. Res-Genet.
 Toxicol. Environ. Mutagen. 698, 43-51.
- Wang, J., Pan, L., Wu, S., Lu, L., Xu, Y., Zhu, Y., Guo, M., Zhuang, S., 2016. Recent Advances
 on Endocrine Disrupting Effects of UV Filters. Int. J. Environ. Res. Public Health 13, 782.
- 564 Wang, X., Yang, Y., Zhang, L., Ma, Y., Han, J., Yang, L., Zhou, B., 2013. Endocrine disruption
- by di-(2-ethylhexyl)-phthalate in Chinese rare minnow (*Gobiocypris rarus*). Environ. Toxicol.
 Chem. 32, 1846-1854.
- 567 Wang, Q., Yang, H.R., Yang, M., Yu, Y.P., Yan, M.T., Zhou, L., Liu, X.C., Xiao, S.Q., Yang, Y.,
- Wang, Y.X., Zheng, L.Y., Zhao, H.H., Li, Y.Y., 2019. Toxic effects of bisphenol A on
 goldfish gonad development and the possible pathway of BPA disturbance in female and
 male fish reproduction. Chemosphere 221, 235-245.
- Weisbrod, C.J., Kunz, P.Y., Zenker, A.K., Fent, K., 2007. Effects of the UV filter benzophenone-2
 on reproduction in fish. Toxicol. Appl. Pharmacol. 225, 255-266.
- Yan, S.H., Wang, M., Zha, J.M., Zhu, L.F., Li, W., Luo, Q.,Sun, J., Wang, Z.J., 2018.
 Environmentally Relevant Concentrations of Carbamazepine Caused Endocrine-Disrupting
 Effects on Nontarget Organisms, Chinese Rare Minnows (*Gobiocypris rarus*). Environ. Sci.
- 576 Technol. 52(2), 886-894.
- Yu, L., Liu, C., Chen, Q., Zhou, B., 2014. Endocrine disruption and reproduction impairment in
 zebrafish after long-term exposure to DE-71. Environ. Toxicol. Chem. 33 (6), 1354-1362.
- Yuan, H.X., Xu, X., Sima, Y.H., Xu, S.Q., 2013. Reproductive toxicity effects of 4-nonylphenol
 with known endocrine disrupting effects and induction of vitellogenin gene expression in
 silkworm, *Bombyx mori*. Chemosphere 93 (2), 263-268.
- 582 Yin, P., Li, Y.W., Chen, Q.L., Liu, Z.H., 2017. Diethylstilbestrol, flutamide and their combination
- 583 impaired the spermatogenesis of male adult zebrafish through disrupting HPG axis, meiosis

\sim				nr		
U	աո			$\mathcal{D}^{\mathbf{I}}$	U	

- and apoptosis. Aquat. Toxicol. 185, 129-137.
- 585 Zhang, X.W., Hecker, M., Tompsett, A.R., Park, J.-W., Jones, P.D., Newsted, J., Au, D., Kong,
- R.,Wu, R.S.S., Giesy, J.P., 2008. Responses of the medaka HPG Axis PCR array and
 reproduction to prochloraz and ketoconazole. Environ. Sci. Technol. 42, 6762-6769.
- Zhang, Q. Y., Ma, X. Y., Wang, X. C., Ngo, H.H., 2016. Assessment of multiple hormone
 activities of a UV-filter (octocrylene) in zebrafish (*Danio rerio*). Chemosphere 159, 433-441.
- 590 Zhao, Y., Castiglioni, S., Fent, K., 2015. Synthetic progestins medroxyprogesterone acetate and
- dydrogesterone and their binary mixtures adversely affect reproduction and lead to
 histological and transcriptional alterations in zebrafish (*Danio rerio*). Environ. Sci.
 Technol. 49, 4636-4645.
- Zhu, L.F., Wang, H., Liu, H., Li, W., 2015. Effect of trifloxystrobin on hatching, survival, and
 gene expression of endocrine biomarkers in early life stages of medaka (*Oryzias latipes*). Environ. Toxicol. 30, 648-655.
- Zucchi, S., Oggier, D. M., Fent, K., 2011. Global gene expression profile induced by the UV-filter
 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (*Danio rerio*). Environ. Pollut.
 159, 3086-3096.
- 600

601 Figure and Table Captions

- 602 Fig. 1. The fecundity and fertility of paired mature medaka exposed to different concentrations of
- OC for 28 d. Data are presented as the mean \pm S.E.M (n=3). The asterisk symbol (*) indicates that
- p < 0.05 is considered a significant difference compared to the control.
- 605 Fig. 2. Histopathology of ovarian tissues (A-E) and testicular tissues (F-J) in mature medaka
- 606 exposed to OC, stained with hematoxylin and eosin. A: control in females; B: 5 μg/L; C: 50 μg/L;
- 607 D: 500 μg/L. E: The relative distribution of different stage follicles in the control and exposure
- groups (*p < 0.05; Data are presented as the mean \pm S.E.M. (n=3)). PO, primary oocyte; PVO,
- 609 previtellogenic oocyte; VO, vitellogenic oocyte; MO, mature oocyte; DO, degenerating
- 610 vitellogenic oocyte. F: control in males; G: 5 μg/L; H: 50 μg/L; I: 500 μg/L; J: The ratio of
- 611 different stages of sperm in the control and exposure groups (*p < 0.05; Data are presented as the
- 612 mean ± S.E.M. (n=3)). SG, spermatogonia; SC, spermatocyte; ST, spermatid; SZ, spermatozoa.
- 613 Fig. 3. Levels of plasma steroid hormones and vitellogenin in adult medaka exposed to OC. Data
- are expressed as the mean ± S.E.M. (n=3). Different letters (a, b, c, d) indicate significant
- 615 differences compared to the control group at levels of p < 0.05.
- **Fig. 4.** The heat map of genes involved in the HPG axis of medaka in response to environmental
- 617 concentrations of OC. Data are expressed as the mean \pm S.E.M. (n=3).
- **Table 1** Development of F1 generation fertilized eggs in dechlorinated tape water and continued
- 619 exposed to OC with the same concentration as their parents. F1 generation embryos were from F0
- generation exposed to 5, 50 and 500 μ g/L OC during the last week exposure.

Accumulative	Morphological	Time to hatching		Concentration (µg/L)	
(%) sətət tates (%)	adnotmatiny raies (%)	(sysb)	(%) (1000000000000000000000000000000000000	FI	ĿО
14.9 ± 5.2	6.2 ± <i>2</i> .8	2.0±2.21	9°7 ± 6°£6	0	Control
$\xi.11 \pm 0.05$	21.2 ± 10.9	∂.0 ± ∂. £1	£.8 ± 4.78	0	ç
34.1 ± 18.9	₽.6±0.71	0.1 ± 2.61	£.8 ± 8.19	0	05
49.0 ± 12.9	č .8 ± ξ . č Ι	15.2 ± 2.1	1.8 ± 1.28	0	005
9.2 ± €.81	0.2 ± 4.8	7.1 ± 1.11	<i>2</i> .1 ± 9.49	0	Control
*2.9 ± 4.12	×2.01 ± 4.85	£.4± 8.81	9 [.] 9 ± 9 [.] 16	ς	5
*6.11 ± 8.28	*8.7 ± €.92	\$5 ⁰ ± 5 [.] 8*	84.5 ± 9.2	05	05
13.4	*9.8 ± 1.92	*1.1 ± 0.22	1.8 ± 2.88	200	200

Table 1 Development of F1 generation fertilized eggs in dechlorinated tape water and continued exposed to OC with the parents. F1 generation embryos were from F0 generation exposed to 5, 50 and 500 µg/L OC during the last week exposure.

Data expressed as mean \pm S.E.M. of each treatment (n=3). The asterisk (*) indicates statistically significant difference from

Highlights

- OC induced reproductive toxicity and estrogenic toxicity in medaka.
- OC significantly increased plasma VTG and sex steroid hormones levels.
- OC significantly upregulated the expressions of genes related to the HPG-axis.
- Histopathological observation reflected OC inhibited spermatogenesis.

Author statement

Yan Saihong: Investigation, Formal analysis, Writing-Review & Editing

Liang Mengmeng: Investigation, Formal analysis

Chen Rui: Investigation

Hong Xiangsheng: Investigation

Zha Jinmiao: Project Administration, Supervision, Conceptualization, Funding acquisition

rervision, Conce,

Conflict of Interest

The authors declare no conflict of interest.

Journal Pression