APPENDIX D

Peak Season Adjustment Factors and Historical Traffic Count Data

	D. W.D.G		MOCF: 0.91
WEEK =====	DATES	SF 	PSCF
123456789011234456789012234567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012333333333333333333333333333333333333	01/01/2011 - 01/01/2011 01/02/2011 - 01/08/2011 01/09/2011 - 01/15/2011 01/16/2011 - 01/22/2011 01/23/2011 - 01/29/2011 01/30/2011 - 02/05/2011 02/06/2011 - 02/12/2011 02/13/2011 - 02/12/2011 02/20/2011 - 02/26/2011 02/20/2011 - 03/05/2011 02/27/2011 - 03/05/2011 03/06/2011 - 03/12/2011 03/13/2011 - 03/19/2011 03/20/2011 - 03/26/2011	1.01 1.00 0.98 0.96 0.94 0.93 0.91 0.90 0.88 0.87 0.99 0.98 0.995 0.995 0.996 0.997 0.998	1.10 1.09 1.07 1.05 1.03 1.02 0.99 0.98 0.97 0.96 0.95 0.97 0.99 1.01 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.10 1.10 1.10 1.10 1.10 1.10

^{*} PEAK SEASON

14-FEB-2012 14:42:38

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2011 HISTORICAL AADT REPORT

COUNTY: 9U - MONROE

SITE: 0023 - DUVAL ST, 200' N SR 5/US-1/TRUMAN AV

YEAR	AADT	DII	RECTION 1	DI	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2011	7200 C	N	3600	ន	3600	9.00	55.10	8.30
2010	6900 C	N	3500	ន	3400	10.26	56.84	10.30
2009	7000 c	N	3400	ន	3600	10.23	56.56	8.40
2008	6600 C	N	3300	ន	3300	10.45	54.98	8.60
2007	6600 C	N	3200	ន	3400	10.00	55.10	9.80
2006	7500 C	N	3900	ន	3600	10.08	55.69	12.30
2005	8900 C	N	4200	ន	4700	10.40	55.70	2.40
2004	9400 C	N	4800	S	4600	10.00	56.00	3.10
2003	10500 C	N		ន		10.10	56.30	4.40
2002	8900 C	N	4600	ន	4300	10.00	54.20	5.60
2001	10500 C	N		ន		10.00	55.90	6.80
2000	8000 C	N	3100	ន	4900	9.90	54.80	6.60
1999	5100 C	N		ន		9.50	56.70	4.80
1998	10500 C	N		ន		9.50	56.60	2.80
1997	11000 C	N		ន		9.60	55.90	3.70
1996	7200 C	N		ន		10.00	55.60	5.50

AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2011 HISTORICAL AADT REPORT

COUNTY: 9U - MONROE

SITE: 5011 - SR 5/US-1/TRUMAN AV, 200' E DUVAL ST

YEAR	AADT	DIE	RECTION 1	DIE	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2011	9000 C	W	4500	E	4500	9.00	55.10	8.30
2010	9700 C	W	4800	E	4900	10.26	56.84	10.30
2009	9300 C	W	4300	E	5000	10.23	56.56	8.40
2008	8600 C	N	4400	ន	4200	10.45	54.98	8.60
2007	8600 C	N	4600	ន	4000	10.00	55.10	9.80
2006	7600 C	N	3700	ន	3900	10.08	55.69	12.30
2005	8200 C	N	4300	ន	3900	10.40	55.70	5.50
2004	10400 C	N	5000	S	5400	10.00	56.00	3.10
2003	9000 C	N		ន		10.10	56.30	4.40
2002	8800 C	N	4300	ន	4500	10.00	54.20	5.60
2001	12000 C	N		ន		10.00	55.90	6.80
2000	9200 C	N	5100	ន	4100	9.90	54.80	6.60
1999	9300 C	N		ន		9.50	56.70	4.80
1998	12000 C	N		ន		9.50	56.60	2.80
1997	11000 C	N		ន		9.60	55.90	3.70
1996	5300 C	N		ន		10.00	55.60	5.50

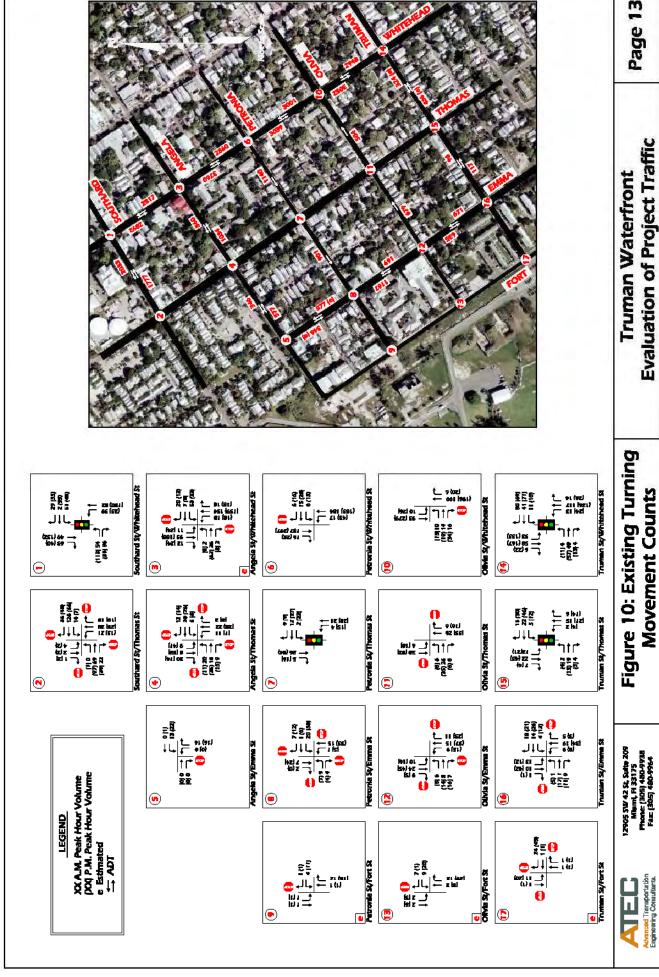
AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2011 HISTORICAL AADT REPORT

COUNTY: 9U - MONROE

SITE: 5013 - SR 5/US-1/WHITEHEAD ST, 100' S OLIVIA ST

YEAR	AADT	DIE	RECTION 1	DI	RECTION 2	*K FACTOR	D FACTOR	T FACTOR
2011	5900 C	N	3000	ន	2900	9.00	55.10	8.30
2010	5900 C	N	2900	ន	3000	10.26	56.84	10.30
2009	6700 C	N	3300	ន	3400	10.23	56.56	8.40
2008	6400 C	N	3100	ន	3300	10.45	54.98	8.60
2007	5300 C	N	2500	ន	2800	10.00	55.10	9.80
2006	5900 C	N	2700	ន	3200	10.08	55.69	12.30
2005	6700 C	N	3100	ន	3600	10.40	55.70	5.50
2004	8300 C	N	4200	S	4100	10.00	56.00	3.10
2003	8800 C	N		ន		10.10	56.30	4.40
2002	8100 C	N	3900	ន	4200	10.00	54.20	5.60
2001	9600 C	N		ន		10.00	55.90	6.80
2000	10100 C	N	6100	ន	4000	9.90	54.80	6.60
1999	9100 C	N		ន		9.50	56.70	4.80
1998	7400 C	N		ន		9.50	56.60	2.80
1997	9800 C	N		ន		9.60	55.90	3.70
1996	6100 C	N		ន		10.00	55.60	5.50


AADT FLAGS: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; X = UNKNOWN *K FACTOR: STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES

APPENDIX E

Traffic Counts

(Source: Taffic Impact Study for Truman Waterfront ATEC)

Evaluation of Project Traffic Truman Waterfront

Movement Counts

Page 13

APPENDIX F

Roadway Capacity
(Source: FDOT)

Generalized Annual Average Daily Volumes for Florida's Urbanized Areas¹

10/4/10

	STATE S	IGNALIZ	ZED ART	ΓERIALS	<u> </u>			FREEWA	YS		
	Class I (>0.0	0 to 1.99 sign:	alized interse	ctions per mil	le)	Lancs	В	C		D	\mathbf{E}
Lanes	Median	В	С	D	E	4	43,500	59,800	0 73	3,600	79,400
2	Undivided	9,600	15,400	16,500	ate ate ate	6	65,300	90,500) 110	0,300	122,700
4	Divided	29,300	35,500	36,700	* * *	8	87,000	120,100) 140	5,500	166,000
6	Divided	45,000	53,700	55,300	***	10	108,700	151,700	184	4,000	209,200
8	Divided	60,800	71,800	73,800	***	12	149,300	202,100	238	8,600	252,500
							\mathbf{F}	reeway Ad	justment	S	
	Class II (2.0	0 to 4.50 signa	alized interse	ctions per mil				iliary	Ram		
Lanes	Median	В	С	D	\mathbf{E}			nes	Meter	* *	
2	Undivided	**	10,500	15,200	16,200		+ 20),000	+ 59	6	
4	Divided	**	25,000	33,200	35,100	<u> </u>					
6	Divided	**	39,000	50,300	53,100	∥ т	NINTERR	пртрв р	I OW H	ICHWA	VC
8	Divided	**	53,100	67,300	70,900	'					
						Lanes	Median	В	С	D	E
Cl	ass III/IV (m	ore than 4.5 s	ignalized inte	ersections per	mile)	2	Undivided	7,800	15,600	22,200	27,900
Lanes	Median	В	C	D	E	4	Divided	34,300	49,600	64,300	72,800
2	Undivided	**	5,100	11,900	14,900	6	Divided	51,500	74,400	96,400	109,400
4	Divided	**	12,600	28,200	31,900		Uninterrupt	ed Flow Hi	iσhway A	diustmen	ıts
6	Divided	**	19,700	43,700	48,200	Lanes	Median		e left lanes		nent factors
8	Divided	**	27,000	59,500	64,700	2	Divided		es .	,	-5%
						Multi	Undivided	. У	es .	-	5%
						Multi	Undivided	. 1	oP.	-2	25%
	Non-State S	ionslized I	2 nadway <i>i</i>	4 diustmen	nte			BICYCL	F MOD	F ²	

(Alter corresponding state volumes by the indicated percent.)

Major City/County Roadways - 10% Other Signalized Roadways

State & Non-State Signalized Roadway Adjustments

(Alter corresponding state volumes by the indicated percent.)

Divided/Undivided & Turn Lane Adjustments

		Exclusive	Exclusive	Adjustment
Lanes	Median	Left Lanes	Right Lanes	Factors
2	Divided	Yes	No	+5%
2	Undivided	No	No	-20%
Multi	Undivided	Yes	No	-5%
Multi	Undivided	No	No	-25%
_	_	_	Yes	+ 5%

One-Way Facility Adjustment

Multiply the corresponding two-directional volumes in this table by 0.6.

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.) Paved Shoulder/Bicycle Lane

Coverage	В	С	D	\mathbf{E}
0-49%	**	3,200	12,100	>12,100
50-84%	2,400	3,700	>3,700	***
85-100%	6,300	>6,300	***	***

PEDESTRIAN MODE²

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Sidewalk Coverage	В	\mathbf{C}	D	E
0-49%	**	**	5,000	14,400
50-84%	**	**	11,300	18,800
85-100%	**	11,400	18,800	>18,800

BUS MODE (Scheduled Fixed Route)

(Buses in peak hour in peak direction)

Sidewalk Coverage	В	С	D	\mathbf{E}
0-84%	>5	≥4	≥3	≥2
85-100%	>4	≥3	≥2	≥1

¹ Values shown are presented as two-way annual average daily volumes for levels of service and are for the automobile/truck modes unless specifically stated. Although presented as daily volumes, they actually represent peak hour direction conditions with applicable K and D factors applied. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and deriving computer models should not be used for corridor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual, Bicycle LOS Model, Pedestrian LOS Model and Transit Capacity and Quality of Service Manual, respectively for the automobile/truck, bicycle, pedestrian and bus modes.

Florida Department of Transportation Systems Planning Office 605 Suwannee Street, MS 19 Tallahassee, FL 32399-0450

² Level of service for the bicycle and pedestrian modes in this table is based on number of motorized vehicles, not number of bicyclists or pedestrians using the facility.

³ Buses per hour shown are only for the peak hour in the single direction of the higher traffic flow.

^{**} Cannot be achieved using table input value defaults.

^{***} Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bicycle mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.

Divided

Divided

Generalized **Peak Hour Two-Way** Volumes for Florida's **Urbanized Areas**¹

10/4/10

Adjustment factors

+5%

-5%

-25%

					Olbain	ZCG AI	cas				10/4/10
	STATE S	SIGNALIZ	ZED ART	ERIALS				FREE	WAYS		
	Class I (>0.0	00 to 1 99 sign	alized intersec	tions per mile	e)	Lanes	В	C		D	E
Lanes	Median	В	C	D	E	4	4,000	5,500	(5,770	7,300
2	Undivided	930	1,500	1,600	***	6	6,000	8,320	10	0,150	11,290
4	Divided	2,840	3,440	3,560	***	8	8,000	11,050	13	3,480	15,270
6	Divided	4,370	5,200	5,360	***	10	10,000	13,960	16	5,930	19,250
8	Divided	5,900	6,970	7,160	***	12	13,730	18,600	2:	1,950	23,230
		,	,	,		ll	т	hoorvoy Ad	inetmonte		
	Class II (2.0	0 to 4 50 sign:	alized intersec	tions per mile	5)	ll		Teeway Ad iliary	jusumenus Ramt		
Lanes	Median	В	C	D	E	ll		nes	Meteri		
2	Undivided	**	1,020	1,480	1,570	ll	+ 1,	800	+ 5%	_	
4	Divided	* *	2,420	3,220	3,400						
6	Divided	* *	3,790	4,880	5,150	∥ ,	INITATEDO	HDTED E	T (337 III	CHWA	57 C
8	Divided	* *	5,150	6,530	6,880	'	JNINTERR	OPIEDE	LOW H	IGHWA	18
			,	,	,	Lanes	Median	${f B}$	C	D	\mathbf{E}
، ا	Class III/IV (more than 4.5	O sionalized in	itersections n	ermile)	2	Undivided	730	1,460	2,080	2,620
Lanes	Median	В	C	D	E	4	Divided	3,220	4,660	6,040	6,840
2	Undivided	**	500	1,150	1,440	6	Divided	4,840	6,990	9,060	10,280
4	Divided	**	1,220	2,730	3,100			•	,		•
		sie sie	1.010	4.240	4.600	II	Uninterrupt	tea riow Hi	guway Ao	ıjusunen	LS

Non-State Signalized Roadway Adjustments

1,910

2,620

4.240

5,770

4,680

6,280

(Alter corresponding state volumes by the indicated percent.)

Major City/County Roadways - 10% Other Signalized Roadways - 35%

State & Non-State Signalized Roadway Adjustments

(Alter corresponding state volumes by the indicated percent.)

Divided/Undivided & Turn Lane Adjustments

		Exclusive	Exclusive	Adjustment
Lanes	Median	Left Lanes	Right Lanes	Factors
2	Divided	Yes	No	+5%
2	Undivided	No	No	-20%
Multi	Undivided	Yes	No	-5%
Multi	Undivided	No	No	-25%
_	_	_	Yes	+ 5%

One-Way Facility Adjustment

Multiply the corresponding two-directional volumes in this table by 0.6.

BICYCLE MODE²

Exclusive left lanes

Yes

Yes

No

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Paved Shoulder/ Bicycle Lane

Median

Divided

Undivided

Undivided

Lanes

2

Multi

Multi

Coverage	${f B}$	C	D	E
0-49%	**	310	1,180	>1,180
50-84%	240	360	>360	***
85-100%	620	>620	***	***

PEDESTRIAN MODE²

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Sidewalk Coverage	В	C	D	E
0-49%	**	**	480	1,390
50-84%	**	**	1,100	1,820
85-100%	**	1,100	1,820	>1.820

BUS MODE (Scheduled Fixed Route)³

(Buses in peak hour in peak direction)

Sidewalk Coverage	\mathbf{B}	C	D	\mathbf{E}
0-84%	>5	<u>≥</u> 4	≥3	≥2
85-100%	>4	≥3	≥ 2	≥1

¹ Values shown are presented as hourly two-way volumes for levels of service and are for the automobile/truck modes unless specifically stated. Although presented as peak hour two-way volumes, they actually represent peak hour peak direction conditions with an applicable D factor applied. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and deriving computer models should not be used for corridor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual, Bicycle LOS Model, Pedestrian LOS Model and Transit Capacity and Quality of Service Manual, respectively for the automobile/truck, bicycle, pedestrian and bus modes.

Source:

Florida Department of Transportation Systems Planning Office 605 Suwannee Street, MS 19 Tallahassee, FL 32399-0450

 $^{^{2}}$ Level of service for the bicycle and pedestrian modes in this table is based on number of motorized vehicles, not number of bicyclists or pedestrians using the facility.

³ Buses per hour shown are only for the peak hour in the single direction of the higher traffic flow.

^{**} Cannot be achieved using table input value defaults.

^{***} Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bicycle mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.

Generalized Peak Hour Directional Volumes for Florida's Urbanized Areas¹

10/4/10

											10,7,10
	STATE S	SIGNALI	ZED AR	ΓERIALS	3			FREE	WAYS		
	Class I (>0.	00 to 1.99 sig	nalized interse	ctions per mi	le)	Lancs	В	C		D	\mathbf{E}
Lanes	Median	В	C	Ď	E	2	2,200	3,020	3	,720	4,020
1	Undivided	510	820	880	***	3	3,300	4,580	5	,580	6,200
2	Divided	1,560	1,890	1,960	***	4	4,400	6,080	7	,420	8,400
3	Divided	2,400	2,860	2,940	***	5	5,500	7,680	9	,320	10,580
4	Divided	3,240	3,830	3,940	***	6	7,560	10,220	12	,080,	12,780
							Fr	eeway Adj	ustments		
	Class II (2.	00 to 4.50 sig	nalized interse	ctions per mi	le)		Auxil		Ramp)	
Lanes	Median	В	C	D	\mathbf{E}		Lan		Meteri		
1	Undivided	**	560	810	860		+ 1,0	00	+ 5%	Ď	
2	Divided	**	1,330	1,770	1,870						
3	Divided	* *	2,080	2,680	2,830	т	NINTERR	пртип и	OW H	CHWA	VC
4	Divided	**	2,830	3,590	3,780	ll .					
						Lanes	Median	В	C	D	E
Cla	ass III/IV (r	nore than 4.5	0 signalized in	tersections pe	er mile)	1	Undivided	400	800	1,140	1,440
Lanes	Median	В	° C	D '	$\mathbf{\hat{E}}$	2	Divided	1,770	2,560	3,320	3,760
1	Undivided	**	270	630	790	3	Divided	2,660	3,840	4,980	5,650
2	Divided	**	670	1,500	1,700		Uninterrupte	ed Flow His	hway A	diustment	·s
3	Divided	**	1,050	2,330	2,570	Lanes	Median	Exclusive		•	nt factors
4	Divided	**	1,440	3,170	3,450	2	Divided	Y	es	,	5%
						Multi	Undivided	Y	es	-5	%
						Multi	Undivided	N	o	-2:	5%
	Non-State S	Signalized	Roadway	Adiustmer	nte			BICYCLI	MODE	-2 ²	

(Alter corresponding state volumes by the indicated percent.)

Major City/County Roadways - 10% Other Signalized Roadways

State & Non-State Signalized Roadway Adjustments

(Alter corresponding state volumes by the indicated percent.)

Divided/Undivided & Turn Lane Adjustments

		Exclusive	Exclusive	Adjustment
Lanes	Median	Left Lanes	Right Lanes	Factors
2	Divided	Yes	No	+5%
2	Undivided	No	No	-20%
Multi	Undivided	Yes	No	-5%
Multi	Undivided	No	No	-25%
_	_	_	Yes	+ 5%

One-Way Facility Adjustment

Multiply the corresponding volumes in this table by 1.20.

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.) Paved Shoulder/Bicycle Lane

Coverage	В	C	D	\mathbf{E}
0-49%	**	170	650	>650
50-84%	130	200	>200	***
85-100%	340	>340	***	***

PEDESTRIAN MODE²

(Multiply motorized vehicle volumes shown below by number of directional roadway lanes to determine two-way maximum service volumes.)

Sidewalk Coverage	В	C	D	E
0-49%	**	**	270	770
50-84%	**	100	600	1000
85-100%	**	610	1000	>1000

BUS MODE (Scheduled Fixed Route)

(Buses in peak hour in peak direction)

Sidewalk Coverage	В	С	\mathbf{D}	\mathbf{E}
0-84%	>5	≥4	≥3	≥2
85-100%	>4	≥3	≥2	≥ 1

¹ Values shown are presented as hourly directional volumes for levels of service and are for the automobile/truck modes unless specifically stated. To convert to annual average daily traffic volumes, these volumes must be divided by appropriate D and K factors. This table does not constitute a standard and should be used only for general planning applications. The computer models from which this table is derived should be used for more specific planning applications. The table and deriving computer models should not be used for corridor or intersection design, where more refined techniques exist. Calculations are based on planning applications of the Highway Capacity Manual, Bicycle LOS Model, Pedestrian LOS Model and Transit Capacity and Quality of Service Manual, respectively for the automobile/truck, bicycle, pedestrian and bus modes.

Source:

Florida Department of Transportation Systems Planning Office 605 Suwannee Street, MS 19 Tallahassee, FL 32399-0450

² Level of service for the bicycle and pedestrian modes in this table is based on number of motorized vehicles, not number of bicyclists or pedestrians using the facility.

³ Buses per hour shown are only for the peak hour in the single direction of the higher traffic flow.

^{**} Cannot be achieved using table input value defaults.

^{***} Not applicable for that level of service letter grade. For the automobile mode, volumes greater than level of service D become F because intersection capacities have been reached. For the bicycle mode, the level of service letter grade (including F) is not achievable because there is no maximum vehicle volume threshold using table input value defaults.