City of Key West Solar Evaluation Form

Per Resolution 19-328, options for solar power components shall be presented to the City Commission for all future City development and redevelopment projects.

Please attach supporting documents, including panel specs for calculations

Section 1: Energy Usage			
Project Name: <u>Frederick Douglas Gym</u>	V II: al.	Post Disaster	r Importance
Square Feet of Building(s):9,587 SF	A_Hign		Low
Estimated Annual Energy Use (Kw):			
Estimated Daily Emergency Energy Use (Kw):			
Section 2: Energy Use Related to Water Heating:			N/A
Section 3: Panel Specs: Warranty:25 years Expected I	Lifespan:	_40 years	

Section 4: Estimated Energy Production

Potential Siting	Space Available for	Estimated Energy	Price Per	Estimated Percent
	Solar (sq foot)	Output (KwH/Yr)	Kilowatt	Energy Supplanted
Roof	9,000	111,069	0.17	
Parking Lot				
Other				
Other				
Water Heater				

Section 5: Estimated Energy Production Cost

Potential	Cost of Net Zero	ROI (Years)	Cost of Supplanting	ROI (Years)
Siting	(supplants all usage)		Emergency Use	
Roof				
Parking Lot				
Other				
Other				
Water Heater				

Section 6: Recommended Installation

Potential	% of Usage	Cost	ROI (Years)
Siting	Supplanted		
Roof			
Parking Lot			
Other			
Other			
Water Heater			

Section 7: Narrative:

- A grid tie solar system is most logical type of system for this application. For a system size of 68 KW works out to 320 watts/panel and costs roughly at 4/4 watt to build. $4 \times 68,000 = 272,000$.
- PVWATTS.NRELGOV calculator shows this system will produce 111,069 KW-hrs/year. Total cost for electricity on the Keys Energy Service system is \$0.17/Kw-hr. This system will produce \$0.17 x 111,069 = \$18,882 worth of electricity every year or roughly \$1,573/month.
- If we take the full cost of the system and divide by the amount of electricity it will produce annually, we find that $272,000 \div 18,882 = 14.4$ years for the system to pay for itself. If the cost can be reduced by 25% then the payoff goes down by 25% to 10.8 years. Neither of these factor in cost increases for the electricity. If electricity costs increase each year, then payback is faster depending on the increase in electricity costs.
- Using the numbers above, then the system will produce $20 \ge 377,640$ worth of electricity in those 20 years. If energy costs increase 2% each year for 20 years the system will produce \$458,783 worth of electricity over the 20 years.
- Note that a solar panels general carry 25 year warranties and can last much longer. If this system lasts 40 years it will pay for itself several times over.

Section 8: Attachments